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Abstract

Autonomous driving technology has drawn a lot of attention due to its fast
development and extremely high commercial values. The recent technologi-
cal leap of autonomous driving can be primarily attributed to the progress in
the environment perception. Good environment perception provides accurate
high-level environment information which is essential for autonomous vehi-
cles to make safe and precise driving decisions and strategies. Moreover, such
progress in accurate environment perception would not be possible without
deep learning models and advanced onboard sensors, such as optical sensors
(LiDARs and cameras), radars, GPS. However, the advanced sensors and
deep learning models are prone to recently invented attack methods. For
example, LiDARs and cameras can be compromised by optical attacks, and
deep learning models can be attacked by adversarial examples. The attacks
on advanced sensors and deep learning models can largely impact the accu-
racy of the environment perception, posing great threats to the safety and
security of autonomous vehicles. In this thesis, we study the detection meth-
ods against the attacks on onboard sensors and the linkage between attacked
deep learning models and driving safety for autonomous vehicles.

To detect the attacks, redundant data sources can be exploited, since
information distortions caused by attacks in victim sensor data result in
inconsistency with the information from other redundant sources. To study
the linkage between attacked deep learning models and driving safety, the
evaluation of the impact of attacks on driving safety in an end-to-end fashion
is the key. Thus, we can leverage the data from di↵erent onboard sensors
to detect attacks for single autonomous vehicle platforms. And we can use
sensor data from multiple neighboring vehicles to achieve the attack detection
for multiple connected autonomous vehicles. Furthermore, we can implement
an end-to-end driving safety evaluation framework to help assess the attack
impact on driving safety.

In this thesis, we first develop a data validation framework to detect and
identify optical attacks against LiDARs and cameras for single autonomous
vehicles. The greatest challenge lies in finding a type of redundant informa-
tion which can be observed in both LiDAR point clouds and camera images.
We tackle the challenge by leveraging depth information as the redundancy.
Our main idea is to (1) use data from three sensors to obtain two versions of



depth maps (i.e., disparity) and (2) detect attacks by analyzing the distribu-
tion of disparity errors. Based on the detection scheme, we further develop
an identification model that is capable of identifying up to n�2 attacked sen-
sors in a system with one LiDAR and n cameras. We prove the correctness
of our identification scheme and conduct experiments to show the accuracy
of our identification method.

Second, as the countermeasures designed for single vehicles take no ad-
vantage of multiple connected vehicles, simply deploying them in a collab-
orative autonomous driving system does not produce more security bonus.
To this end, we propose a new data validation method by leveraging data
sources from multiple neighboring vehicular nodes to detect the optical at-
tacks against LiDARs. The first challenge of designing the method is that no
mobile network can bare the burden of transmitting all point clouds among
connected autonomous vehicles, leading to limited size of data for validation,
while the second challenge is that the scans of objects in point clouds are usu-
ally severely incomplete at the unlit side, causing barriers to accurate valida-
tion. To overcome the first challenge, we leverage a region proposal network
to produce proposals as validation regions and propose to only transmit the
scans within them, which heavily scales down the size of data for transmission
and never overlooks potential attacks. We tackle the second challenge though
concatenating the original scan of objects with a symmetrical copy of it to fill
in the incomplete part. We perform preliminary experiments to examine our
method. And the results show that our data validation method for multiple
connected vehicles detects the attacks e↵ectively with a fair accuracy.

Third, previous studies demonstrated that adversarial examples can hugely
impact deep learning models for environment perception, and inaccurate
perception results with no doubt may jeopardize the driving safety of au-
tonomous vehicles. However, driving safety is a combined result of many
factors, and the weakened model performance does not necessarily result in
safety dangers. The linkage between the performance of a deep learning
model under adversarial attacks and driving safety is still under-explored.
To study such linkage and evaluate the impact of adversarial examples on
driving safety in an end-to-end fashion, we propose an end-to-end driving
safety evaluation framework with a set of driving safety performance met-
rics. With the framework, we investigate the impact of two primary types
of adversarial attacks, perturbation attacks (as shown in Fig. 5.2) and patch
attacks (as shown in Fig. 5.5), on the driving safety rather than only on the
perception precision of deep learning models. In particular, we consider two
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state-of-the-art models in vision-based 3D object detection, Stereo R-CNN
and DSGN. By analyzing the results of our extensive evaluation experiments,
we find that the attack’s impact on the driving safety of autonomous vehicles
and the attack’s impact on the precision of 3D object detectors are decou-
pled. In addition, we further investigate the causes behind the finding with
an ablation study. Our finding provides a new perspective to evaluate adver-
sarial attacks and guide the selection of deep learning models in autonomous
driving.

To briefly summarize, in this thesis, we first propose a framework to de-
tect optical attacks and identify the attacked sensors for single autonomous
vehicles. Then, we propose a data validation method to detect the optical
attacks against LiDARs using point clouds from multiple connected vehicle
sources. At last, we propose an end-to-end driving safety evaluation frame-
work to investigate the impact of adversarial attacks on the driving safety of
autonomous vehicles. All the presented research in this thesis would greatly
advance the safety and security of autonomous driving technology and even-
tually benefit our future life.
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Chapter 1

Introduction

1.1 Background

Human has dreamed of autonomous driving for years, which could be traced
back to the 20th century [54]. The modern development of autonomous
driving technology started with the DARPA Grand Challenge in 2004 [9].
Since then, it has attracted significant attention from both academia and
industry due to its scientific charisma and the extremely high commercial
values.

A modern autonomous vehicle is a highly complex Artificial Intelligence
(AI) system consisting of many functional pieces organized along a data-
processing pipeline. These functional pieces can be roughly categorized into
three major modules, i.e., perception module, planning module, and execu-
tion module [3, 49]. The perception module produces high-level informa-
tion about surrounding environment through environment perception. The
planning module makes short-term driving decisions and long-term driving
strategies based on the environment information from the perception module
and user intentions. And the execution module carries out the commands is-
sued by the planning module. It is worth noting that the recent advancement
of autonomous driving technology primarily lies in the perception module.

The recent technological leap in the perception module is mainly due
to advanced onboard sensors and deep learning models. Since the DARPA
Grand Challenge in 2004, autonomous vehicles have been equipped with
multiple types of sensors, such as cameras, LiDARs, Radars, and GPS [9].
These sensors, in particular optical sensors (cameras and LiDARs), provide
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essential measurements of the surrounding environment with better quality
and higher quantity. Specifically, cameras provide RGB image data, which
capture visual shapes and textures of real-world objects in detail and en-
able the vision-based solution for autonomous driving. And LiDARs emit
and receive laser beams to precisely measure the distances between objects
and the ego autonomous vehicle, creating the possibility for accurate object
detection in 3D world. In addition, as deep learning developed so fast and
received great success these years, it has been widely applied to almost all
computer vision applications. Deep learning methods relying on powerful
generalization capability and large datasets have significantly boosted the
performance of environment perception tasks in autonomous driving, such
as 2D/3D object detection, 2D/3D object tracking, and semantic segmenta-
tion. And there emerged a lot of excellent learning based algorithms, e.g.,
YOLO [47], SSD [37], and R-CNN based algorithms [24, 23, 51].

Despite the great progress in autonomous driving technology, the top
concern for its public adoption is still over safety and security. It is hard to
convince people to put their lives in the hands of a driving machine for a
period of time, without showing them that the machine is flawless.

However, every coin has two sides. While advanced sensors and deep
learning make significant improvements for environment perception, they also
su↵er from recently reported security threats.

For onboard sensors, they can be compromised to make erroneous mea-
sures or even dysfunctional by physical attacks. Petit et al. [44] demonstrated
that cameras can be blinded by strong light beams and are dysfunctional un-
der continuous quick exposure changes caused by a flickering light source.
They also used laser beams with the same frequency as used by LiDARs
to spoof fake points in point clouds. Shin et al. [56] systematically studied
the attack methods against LiDARs and introduced the saturation attack to
incapacitate LiDARs. And Yan et al. [67] focused on other onboard sensors
and successfully launched jamming and spoofing attacks against ultrasonic
sensors and radars. Based on these previous studies, the research community
kept digging into the flaws and vulnerabilities of onboard sensors and pro-
posed more comprehensive studies on compromising these sensor [6, 60, 5].

Since the sensors for measuring the surrounding environment are at the
beginning of the entire data-processing pipeline of autonomous driving sys-
tems, errors in sensory measurements could lead to incorrect object detection
results, and further result in much more severe mistakes in driving decision
making of the planning module, jeopardizing the driving safety.
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As for deep learning models, adversarial examples are believed as one of
their major securities threats [65]. Adversarial attacks refer to the malicious
use of adversarial examples to attack deep learning models. The examples
are created by incorporating the normal input data of deep learning models
with carefully designed perturbations, and can confuse deep learning mod-
els to make prediction errors. Another major trait of adversarial examples is
that they can be in variety of forms. Some adversarial examples are with per-
turbations that are even too tiny to be perceivable to human eyes [25], while
some adversarial examples with high transferability are universally e↵ective
to a range of di↵erent deep learning models [43]. Some of them look like
stickers and tapes, while some are designed to simulate natural lighting ef-
fects [19]. The unpredictability, concealment, and harmfulness of adversarial
examples make them extremely hazardous to deep learning models.

Moreover, since deep learning models are incorporated in almost all the
processes in the autonomous driving pipeline, erroneous inferences caused
by adversarial examples can happen everywhere, especially in the perception
module whose input is from the environment, also imposing significant risks
on driving safety.

1.2 Research Objectives and Motivations

In this thesis, to help overcome the threats to onboard sensors and deep
learning models in autonomous vehicles, we are motivated to study their
impacts and design detection methods.

First, we aim to detect optical attacks against cameras and LiDARs.
Specifically, we design a detection method and an identification method for
single autonomous vehicles by validating the data produced by multiple on-
board optical sensors (camera and LiDAR). And we design the detection
method for the connected autonomous vehicles by validating sensor data
from multiple neighboring vehicular nodes. Our motivations for these two
research objectives are: (1) since cameras and LiDARs are the most crit-
ical sensors for environment perception, they should have the top priority
for protection; (2) since attacks cause information distortions in sensor data,
resulting in the information inconsistency among sensor data from di↵erent
sources, redundant data sources can be used for sensor data validation.

Second, we evaluate the impact of adversarial attacks on the driving safety
of autonomous driving systems in an end-to-end fashion. Our motivations
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for this research objective are: (1) adversarial attacks can do direct harms to
the performance of deep learning models, but the data-processing pipeline of
autonomous vehicles consists of many functional pieces and driving safety is
a combined e↵ort of many factors, so weakened deep learning performance
does not necessarily lead to dangers in driving safety; (2) the linkage between
the weakened performance of a deep learning model caused by adversarial
attacks and driving safety of autonomous vehicles has not been explored in
previous studies.

1.3 Challenges

To detect and identify optical attacks for the single autonomous vehicles by
validating sensor data from di↵erent onboard sensors, there exist two major
challenges. First, the e↵ects of optical attacks on camera images and LiDAR
point clouds are di↵erent, so the information distortions appearing respec-
tively in images and point clouds are di↵erent. It is challenging to find an
appropriate type of redundant feature where the information distortions can
be observed for both images and point clouds. Second, the challenge lies in
that the scope and the position of the information distortions appearing in
both types of data are unpredictable, so the data validation method must
perform in fine granularity for whole sensor views. In our data validation
countermeasure framework, we use depth information as redundancy to re-
veal information distortion, which can be extracted from both camera images
and LiDAR point clouds, to tackle the first challenge. As for the second chal-
lenge, we compare the depth information distortion among di↵erent sensor
data in pixel-level. Based on these two techniques, we design an algorithm
to detect optical attacks using a three-sensor system, and further derive a
method to identify the attacked sensors.

Moreover, we also face challenges when detecting optical attacks by vali-
dating LiDAR point clouds for multiple connected vehicles. First, the point
clouds from every vehicular node are harvested in a fixed perspective each
time, resulting in one side of objects not being scanned by LiDARs, so it
is challenging to accurately validate the redundant information in severely
incomplete scans. Second, the network connecting to autonomous vehicles
cannot bear big data transmission overhead, indicating that only limited size
of point clouds can be transmitted. But the information distortions caused
by attacks could exist anywhere in point clouds, so the challenge lies in how
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to scale down the data for validation while maintaining information distor-
tions still detectable at the same time. In our proposed detection method,
we use a mirroring technique to fill the unscanned part of objects with points
according to the object symmetry, to overcome the first challenge. And we
use a region proposal network (RPN), e.g., PointNet++ [45], to process the
point clouds and use the produced proposals as the validation regions, so
that the scale of data for validation is significantly reduced and no poten-
tial information distortions are overlooked. As for the data validation, we
first use the scans in the validation regions to generate surface meshes. And
then we discretize them and measure the distances among them. Finally, we
detect attacks by analyzing the distance distributions.

In terms of assessing the impact of adversarial attacks on driving safety
of autonomous vehicles in an end-to-end fashion, we implement an end-to-
end driving safety evaluation framework. To this end, we face two nontrivial
technical challenges. First, along the data-processing pipeline, the 3D object
detection results in the perception module only contain static information,
such as position and dimension, and include no dynamic information. Second,
to realistically generate a planned trajectory for the self-driving ego-vehicle,
real driving constraints, such as speed limits for di↵erent road types and
dynamics models for di↵erent vehicles, must be provided to the planning
module. To tackle the first challenge, we train a classifier with manually
labeled ground truth to categorize whether an object is moving or static.
For the second challenge, we train another classifier with road type labels
to classify the road type of each scenario, so as to select appropriate driving
constraints.

1.4 Contributions

Our main contributions in this thesis are as follows:

• We propose a data validation framework against the optical attacks for
single autonomous vehicles by detecting distortions in depth informa-
tion in a three-sensor system. And based on this, we further develop a
method capable of identifying up to n� 2 attacked sensors in a system
with one LiDAR and n cameras and give mathematical proof of its
correctness.

• We propose a data validation scheme against the optical attacks on
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LiDARs for connected autonomous vehicles, by analyzing the distance
distributions of surface meshes generated from LiDAR point clouds
which are collected from multiple neighboring autonomous vehicles.

• We propose an end-to-end driving safety evaluation framework and use
it to evaluate the impact of adversarial attacks on the driving safety of
vision-based autonomous vehicles in an end-to-end fashion. We inves-
tigate the linkage between attacked deep learning models and driving
safety and find that, the attack impact on the driving safety and the
attack impact on the precision of 3D object detectors are decoupled.

1.5 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we review the
related literature to this thesis. In Chapter 3, we introduce our data valida-
tion framework for single autonomous vehicles. In Chapter 4, we present the
proposed data validation scheme for multiple connected autonomous vehi-
cles. In Chapter 5, we introduce the evaluation of the impact of adversarial
attacks on driving safety. Finally, we conclude and discuss the future work
in Chapter 6.

16



Chapter 2

Literature Review

In this chapter, we review the related work from the perspectives of optical
attacks, existing countermeasures against optical attacks, depth estimation,
adversarial attacks, vision-based 3D object detection, and motion planning.

2.1 Attacks on Optical Sensors

The methods for attacking optical sensors (LiDAR and camera) gradually
become more and more advanced. In surveys of studies [63, 50], researchers
introduced the vulnerability that perceptual sensors of AVs could be compro-
mised via physical channels at a close distance. In [44], the authors showed
several e↵ective and realistic methods to compromise a 2D LiDAR and a
camera. Particularly, in their experiments, they managed to relay and spoof
LiDAR signals, as well as blind the camera using strong light beams. Ad-
versary attacks against camera with intensive lights were also studied in [67]
and even caused irrecoverable damages to the camera. Later, Shin et al.
demonstrated the attacks against Velodyne VLP-16, one of the most popu-
lar top-sale 3D LiDARs in the market, by producing fake signals [56]. Based
on the previous work, the researchers dug even deeper in [6], in which the
authors designed an optimization-based strategy to produce more bogus dots
to compromise a 3D LiDAR with a much higher success rate, and they con-
structed new attacking scenarios to study the impact on the decision making
of AVs. We refer to these attacks using physical signals against optical sen-
sors as optical attacks. Despite their importance, existing studies in optical
attacks only give some rough countermeasure ideas, such as redundancy of
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sensors and randomization of LiDAR pulse.

2.2 Existing Countermeasures against Opti-
cal Attacks

In the literature, there are only a few studies for systematically defending op-
tical sensors of AVs, but these studies focus on other types of sensor attack.
For example, the authors of [52] claimed that the attacks against a camera
could be wise enough to erase only objects from pictures or modify their
positions. By using an additional LiDAR as a reference, they proposed to
extract object features from images and LiDAR point cloud, and then detect
the attacks via mismatches of the two sets of features. In [8], Changalvala et
al. investigated an internal attack that can tamper a point cloud from the
inside of an AV system, and they tackled the detection problem by adding a
watermark to the LiDAR point cloud. Di↵erent from [52] and [8], our work
targets at defending against the optical attacks on LiDAR and cameras of
AVs. We follow the idea of redundancy of sensors and design a countermea-
sure framework that not only can detect optical attacks via analyzing the
inconsistency of depth information (i.e., disparity) from di↵erent sources,
but also can identify the compromised sensors of an AV system.

2.3 Depth Estimation

Depth estimation is a task to estimate the distance to objects at every pixel
using image data. As for estimating depth using images, there are two main
categories of algorithms: monocular-vision based and stereo-vision based.
The current methods of the two categories all adopt deep neural networks,
but the monocular ones consider the task as a dense matrix regression prob-
lem and focus on minimizing the error of predictions, while the stereo-vision
based algorithms formulate it as a problem of matching pixels from two im-
ages [4]. As a result, DORN [20], one of the best monocular methods, can
only predict depth with an error of around 9%. In contrast, as a representa-
tive algorithm of the latter category, the state-of-the-art PSMNet [7] achieves
the task with an error that is less than 2% by leveraging the spatial pyramid
pooling structure. In this thesis, we choose PSMNet over other methods
because of its better accuracy.
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2.4 Adversarial Attacks

A survey of general vulnerabilities in autonomous driving can be found in [63,
50]. Among all the vulnerabilities, the perturbation attack and the patch
attack are the most dangerous threats of vision-based autonomous driving
systems, since they can directly cause damages to input images.

Both the perturbation attack and the patch attack fall into the domain
of adversarial attacks. The main idea of adversarial attacks is to leverage
small changes in the input to trigger significant errors in the output of deep
learning models. According to [69], adversarial attacks can be either univer-
sal (e↵ective to all valid inputs) or input-specific (only e↵ective to a specific
input). There are mainly two categories of methods to achieve adversarial
attacks, namely, optimization-based methods and fast gradient step method
(FGSM)-based approach. Optimization-based methods can be used for either
universal attacks or input-specific attacks. An example is L-BFGS proposed
by Szegedy et al. [61]. FGSM-based methods include FGSM [26] and its ex-
tensions, such as I-FGSM [34], MI-FGSM [16], and PGD [39]. These methods
are usually used only for input-specific attacks.

The perturbation attack and the patch attack work in di↵erent ways.
The perturbation attack usually a↵ects all pixels in an input image but the
changes in pixel values are very small, while the patch attack only a↵ects
a small number of pixels but the changes in pixel value are larger. Both
the attacks were studied concerning di↵erent functional modules needed in
vision-based autonomous driving. For example, the perturbation attack was
studied regarding sign classification in [19], 2D object detection in [38], se-
mantic segmentation in [32, 64], and monocular depth estimation in [74, 40],
while the patch attack was studied regarding lane keeping in [75], optical flow
estimation in [46], 2D object detection in [59, 10], and monocular depth esti-
mation in [40]. None of these studies, however, focus directly on the attacks’
impact on driving behavior and driving safety of autonomous vehicles.

2.5 Vision-Based 3D Object Detection

Vision-based 3D object detection provides a more budget-friendly approach
to perform object detection in 3D space by mainly leveraging stereo cameras
instead of expensive LiDARs. It is the core of vision-based autonomous driv-
ing. Traditional approaches, e.g., 3DOP [12] and Pseudo-LiDAR [62], first
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generate a pseudo point cloud with depth estimation and then perform 3D
object detection with similar methods used in LiDAR-based 3D object detec-
tion. As a result, they are usually not comparable to LiDAR-based methods
in terms of accuracy and e�ciency. Di↵erent from traditional approaches,
Stereo R-CNN [36] and DSGN [14] are the two leading methods in this area.
The network of Stereo R-CNN consists of a Region Proposal Network (RPN)
and a regression part. The 2D bounding box candidates generated by the
RPN are fed to the regression part where keypoints of 3D bounding boxes
are predicted. The network of DSGN includes a single-stage pipeline which
extracts pixel-level features for stereo matching and high-level features for
object recognition. Both methods can achieve comparable performance to
LiDAR-based methods.

2.6 Motion Planning

Motion planning is a key task for autonomous vehicles. Given an initial
vehicle state, a goal state region, a cost function, and vehicle dynamics,
motion planning finds collision-free trajectories. Currently, sampling-based
motion planning algorithms are the mainstream methods [72, 73]. They can
be viewed as a discrete planner, such as RRT [35], greedy BFS, and A* [28],
in combination with a C-space sampling scheme.

2.7 Existing Autonomous Driving Systems

There are only a limited number of open source autonomous driving system
structures. As for real autonomous driving system structures, there is only
one available, Baidu Apollo [2]. In Fig. 2.1, we illustrate the system structure
of Baidu Apollo. As we can see, for sensors, the Baidu Apollo vehicle is
primarily equipped with three types of sensors for environment perception,
cameras, LiDARs, and Radars. And the tasks of environment perception
can be categorized as sign/tra�c light detection, lane/flow detection, object
detection, and object tracking. After the environment perception, the object
tracking results are fused together, and fed to the motion planning module
along with the results of sign/tra�c light detection. At last, the results of
motion planning is fed to the control module. Here, we also take the system
structure of Baidu Apollo for example, to show where our three research
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Figure 2.1 Take Baidu Apollo [2] for example, this is where the three research

objectives (highlighted boxes) in this thesis locate in a real autonomous driving

system.

objectives locate in a real autonomous driving system.
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Chapter 3

Sensor Data Validation for
Single Autonomous Vehicles

3.1 Introduction

In the past few years, autonomous driving has attracted significant attention
from both academia and industry. Recent advances in artificial intelligence
and machine learning technologies enable accurate object and event detec-
tion and response (OEDR) [53]. The technology advances, together with
great commercial potentials and incentives, quickly pushed the adoption of
autonomous driving. For instance, Waymo launched a driverless taxi service
in Arizona in 2018 [15]. Tesla has announced the beta version of their full
self-driving feature of its products [30].

To facilitate accurate OEDR tasks, autonomous vehicles (AVs) are usually
equipped with a number of sensors, including GPS, inertial measurement
unit, radar, sonar, camera, light detection and ranging (LiDAR), etc. [2].
Among these sensors, optical devices (LiDAR and camera) have become more
and more important because they can provide object detection in a large
range and also because many emerging machine learning models proposed in
the past few years can accurately measure the depth of objects and detect
objects. Due to the importance of these optical devices, in this chapter, we
focus on their security aspects, particularly on the mitigation of potential
attacks on these optical devices.

Despite the importance of the security of optical devices in an autonomous
driving system, it was investigated only in a few previous studies. In [63, 50],
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researchers summarized several categories of vulnerabilities in autonomous
vehicles. In [44, 67, 56], researchers demonstrated through experiments that
LiDAR can be attacked by sending spoofed and/or delaying optical pulses.
They also demonstrated that a camera can be blinded if it receives an intense
light beam.

Although these pioneer studies are important, there is a lack of a com-
prehensive mechanism to detect and identify such attacks. In this chapter,
we propose a novel framework to tackle this important issue by (1) detecting
the optical attacks using data from multiple sensors and (2) identifying the
sensors that are under attack. To achieve accuracy in both detection and
identification, there are two major challenges:

• The optical signals can be processed by many advanced machine learn-
ing models, each of which can generate various features. Moreover,
optical signal attack causes di↵erent consequences on camera images
and LiDAR point clouds. Therefore, an appropriate type of feature
needs to be chosen as the common ground where both attacks can be
detected.

• The size and the position of the damaged area caused by optical signal
attack in images and point clouds are unpredictable. The damaged area
can appear anywhere in the sensor view. Detection method must per-
form fine-grained detection across the whole sensor view in order to be
invariant to the size and position of the damaged area and distinguish
the feature di↵erences in non-attack scenarios and attack scenarios.

To address the first challenge, the proposed framework includes an optical
attack detection method that extracts depth information, which is referred
to as the distance from the ego-vehicle to the surrounding environment, from
two sets of sensor data respectively and then uses depth information as the
common ground to detect attacks on both images and point clouds. To
address the second challenge, our method detects attacks by analyzing the
distribution of disparity errors that measure pixel-level disparity inconsis-
tencies in the whole sensor view. Thus, the detection method is robust.

The main contributions of this study can be summarized as follows:

• We develop a new technique to detect optical attacks on a system that
consists of three sensors, including two possible cases (1) one LiDAR
and two cameras, or (2) three cameras. Three optical sensors are the
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minimal number of sensors to obtain two depth maps in general sen-
sor setups for autonomous vehicles. Specifically, we first use data from
three sensors to obtain two versions of depth maps (i.e., disparity) and
then detect attacks by analyzing the distribution of disparity errors.
In our study, we use real datasets of KITTI [22, 21] and the state-
of-the-art machine learning model PSMNet [7] to evaluate our attack
detection scheme and the results confirm the e↵ectiveness of our detec-
tion method.

• Based on the detection scheme, we further develop an identification
model that is capable of identifying up to n � 2 attacked sensors in a
system with one LiDAR and n cameras. In our study, we prove the
correctness of our identification scheme and conduct experiments to
show the accuracy of our identification method.

• At last, we investigate the sensitivity of our framework to optical at-
tacks with more diverse settings. We use experiments to show its ex-
cellence in this aspect.

The rest of this chapter is organized as follows. In Section 3.2, we first
discuss the system models, including the optical sensors and attack models,
and our attack mitigation framework. In Section 3.3, we elaborate on the
attack detection schemes. In Section 3.4, we further investigate the attack
identification issue. In Section 3.5, we examine the overall sensitivity of our
framework. Finally, we conclude this chapter in Section 3.6.

3.2 System Models

In this section, we first explain the main optical sensors in an autonomous
driving system and their normal operations. We then elaborate on the attack
models on LiDAR and camera, with some numerical results that illustrate
the impacts of optical attacks. Finally, we briefly explain the main idea of
the proposed framework for attack detection and identification.

3.2.1 Optical Sensors

In this chapter, we consider a general autonomous driving system, and we
focus on the optical devices, in particular, LiDAR and camera.
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LiDAR

A LiDAR sensor can send and receive specific optical pulses in certain di-
rections. By comparing the incoming reflected signals with the transmitted
ones, LiDAR can provide an accurate estimation of the distance between the
LiDAR and an object in a specific direction. The output of LiDAR consists
of a set of points in 3D space, which is known as a point cloud. By clustering
these points, the object detection models applied in AV systems can locate
obstacles in the real world.

Camera

Cameras are very common in existing autonomous driving systems. AVs are
usually equipped with more than two of them for covering the 360-degree
view of surrounding environment. The produced images are useful to several
perception functions, such as obstacle detection and road/lane detection.

Specifically, similar to human eyes, two cameras can be used to form a
stereo vision system that can estimate the depth of an object. As a simple
example, if a real-world point is captured at pixel Pl = (xl, y) in the left
image and at pixel Pr = (xr, y) in the right image, then the disparity d is
defined as d = xl � xr. We can calculate the depth z using

z = f ⇥ b

d
, (3.1)

where f is the focal length and b is the distance between the two cameras.
In general, we can obtain the depth of a real-world point using disparity,

once the pair of corresponding pixels (Pl and Pr) are located in two images.
Therefore, the main goal of depth estimation algorithms, such as PSMNet [7],
is to identify pairs of pixels in two images that are corresponding to the
same real-world points. Finally, a disparity map is generated by computing
disparity for every pixel in an image.

3.2.2 Data-Processing Pipeline of Autonomous Vehi-
cles

We illustrate the general data-processing pipeline for autonomous vehicles
in Fig. 3.3. This pipeline is an abstract of existing autonomous driving sys-
tems, such as Baidu Apollo [2]. As we can see first, the perception model
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Bogus Signal

Figure 3.1 An example of a compromised point cloud that contains bogus signals

in a region.

Figure 3.2 An example of a compromised camera image that contains a round

Gaussian facula.

directly takes the raw sensor data and outputs the high-level environment
information, such as object detection results, self-localization results, tra�c
sign information, for the planning module. After receiving the information
delivered by the perception module, the planning module makes driving de-
cisions based on the received information, user intentions, and other infor-
mation. Finally, the action module sends commands to vehicular hardware
(gas, steer, brake, etc.) according to the decisions made by the planning
module. Therefore, if the optical attacks cause wrong measurements in raw
data of optical sensors, errors may propagate along this pipeline and cause
risks to the safety of autonomous vehicles.

3.2.3 Attacks on Optical Sensors

Attacks against LiDAR

In [44] and [56], the authors demonstrated several methods to attack LiDARs.
The main idea in these attacks is to generate or relay the legitimate optical
pulses so as to mislead the perception module in the system model.

To attack LiDARs, attackers must know in advance the laser frequency
and the time sequence of the victim LiDAR, and use photodiode, signal gen-
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erator, and a laser at the same frequency as used by the victim LiDAR to
launch the attack. Although the existing LiDAR spoofing attacks can only
generate a limited number of fake points, we believe that a more powerful at-
tacker can generate a larger number of spoofed points in the point cloud with
several advanced attacking sources. Therefore, in this chapter, we produce
the compromised point clouds by generating spoofed signals for a region, so
that the perception module of AVs may detect a fake object, as shown in
Fig. 3.1.

Attacks against Camera

The attacks against camera have been studied in [44] and [67]. The main
idea in these studies is to generate strong light signals so as to blind the
cameras. According to [44], to blind a camera, the power of light source
must increase exponentially with the growth of the distance between the light
source and the camera. The e↵ectiveness of the attacks is also a↵ected by
the environment light conditions. Therefore, when LED is used, in order to
form e↵ective attacks, the distance between the light source and the camera
must be within a few meters, and the attacks must be conducted in dark
environments, which is less practical. By comparison, attacks using lasers
seem to be more realistic.

In our study, we believe that the attackers do not need to completely
blind the camera. Instead, their main objective is to mislead the perception
module in the autonomous driving system. To this end, we consider that
the attacking light source is a laser and the distance between the attacking
source and the cameras can be su�ciently large. As a result, the attacks from
a laser result in a contaminated area with certain size at a random position
in images. Therefore, we generate the a↵ected camera data by overlaying
a Gaussian facula on them, as shown in Fig. 3.2. The a↵ected images we
generate are equivalent to the results in [44] and [67].

3.2.4 Impact of the Optical Attacks

To understand the impacts of the aforementioned optical attacks, we con-
duct extensive experiments testing the object detection algorithms for AVs
with the compromised sensor data. Next, we briefly introduce the common
experimental setup in this chapter, which is also used in the experiments of
other sections.
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Figure 3.3 In AV systems, the perception module processes the raw sensor data and

generates the environmental high-level information for driving decision making.

Then, the driving commands are sent to control units.

Common Experimental Setup

In this chapter, we use two datasets. The first one is the KITTI raw dataset [21],
which includes data of one LiDAR and four cameras in di↵erent environmen-
tal conditions for autonomous driving, such as City, Residential, Road,
Campus, etc. We customize it by selecting 1000 sets of sensor data.

The second dataset we use is the one provided in the KITTI object de-
tection benchmark [22], which contains sensor data of one LiDAR and two
cameras. We divide the labeled part of the dataset into a training set and a
test set according to [11]. The two sets include 3712 sets of sensor data and
3769 sets of sensor data, respectively.

To produce the compromised LiDAR data, we generate a bogus signal
with a height of 1.5 meters and a width of 2.5 meters, which is equal to the
width of typical highway lanes, at a random distance of 6 to 10 meters away
from the LiDAR sensor in point clouds.

To generate the compromised camera images, we overlay a round Gaus-
sian facula with a random radius of 187 pixels to 375 pixels on images that
have a size of 1242 pixels by 375 pixels.
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Attack Experiments and Results

Here, we first conduct experiments on the customized KITTI raw dataset [21].
To evaluate the impact of the optical attacks on LiDAR, we use a pre-trained
model based on PIXOR [68], which is a 3D object detection method using
LiDAR data. In our experiments, we generate a compromised point cloud
for each one of the 1000 sets of sensor data and feed it to the PIXOR model.
We observe that the model falsely considers the bogus signals as obstacles in
986 cases out of 1000.

To measure the impact of the attacks on camera, we use the standard
performance metric, average precision (AP), where the prediction is con-
sidered accurate if and only if the Intersection over Union (IoU) is larger
than 50%. In addition, we use a pre-trained model provided in TensorFlow
API [33] that can detect vehicles from images. Specifically, the model is
based on Faster R-CNN [51] with a ResNet-101 architecture [31]. In our
experiments, we produce a compromised image for each set of sensor data in
the dataset and feed it to the Faster R-CNN model. The numerical results
show that the AP for detecting cars is 84.62% when there are no attacks.
By comparison, the AP drops dramatically to 61.53% when there are optical
attacks against the camera.

To briefly summarize, we observe that the aforementioned attacks on
optical devices can significantly compromise the accuracy of object detection,
which is a fundamental task of perception module in autonomous driving. As
shown in Fig. 3.3, the results of environment perception are passed to the
driving decision module that directly sends commands to the vehicle control
units, such as the engine and brake. Therefore, we believe that optical attacks
are extremely hazardous because it is highly possible that an inaccurate
perception due to optical attacks can lead to wrong driving decisions and
can cause catastrophic outcomes.

3.2.5 A Mitigation Framework Against Optical Attacks

To defend against such attacks, in this chapter, we propose a framework
to mitigate optical attacks. The main idea of our framework is to detect
optical attacks and then identify the a↵ected sensors. In this manner, the
autonomous driving system can choose to use signals from sensors that are
not under attack to perform accurate perception.

Specifically, our framework consists of two main procedures. The first
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Figure 3.4 The detection method is designed for two three-sensor systems. For

Scenario 1, the detection method structure involves Block A and Block C. For

Scenario 2, the detection method structure involves Block B and Block C.

procedure is for attack detection. To this end, we consider a system that
consists of three sensors in two scenarios, (1) one LiDAR and two cameras,
and (2) three cameras. In both cases, we use data from three sensors to
obtain two versions of disparity maps and then detect attacks by analyzing
the distribution of disparity errors. Based on the first procedure, we design
the second procedure to identify up to n�2 a↵ected sensors in a system that
consists of one LiDAR and n cameras. In Section 3.3 and Section 3.4, we
introduce the two procedures in more detail.

3.3 Attack Detection

In this section, we first explain why we target a system that consists of three
sensors and then make a hypothesis about the feasibility of the detection task
in a three-sensor system. Next, we focus on the disparity error and how to
detect attacks by analyzing the disparity error distribution. Specifically, we
elaborate on the calculation of disparity error for two main scenarios of the
three-sensor system and conduct extensive experiments on the real dataset
to prove the hypothesis and show the accuracy of our method.
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3.3.1 Three-Sensor Systems and a Hypothesis

For attack detection, we aim to detect attacks with su�cient accuracy using
the smallest number of sensors. Due to the trade-o↵ between cost and per-
formance of object detection, usually, there is one primary LiDAR mounted
on the roof of an autonomous vehicle which is also equipped with multiple
cameras [2]. To obtain two versions of a depth map from an AV system like
this, we at least need three sensors: one LiDAR and two cameras, or three
cameras.

For the first case, we notice that LiDAR can produce accurate depth maps
in point clouds. On the other hand, stereo-vision based depth estimation
algorithms can also generate depth maps out of stereo images. Intuitively, if
we compare a depth map produced by LiDAR and another generated by two
stereo images, we may be able to detect the distortion of depth information
caused by optical attacks on such a three-sensor system. Consequently, the
first three-sensor system that we consider consists of one LiDAR and two
cameras.

For the second case, it is obvious that we can use the image taken by one
camera as the reference, and then use images taken by two other cameras to
produce two depth maps using a depth estimation model. By comparing the
two depth maps, we may be able to detect attacks on the second three-sensor
system that consists of three cameras.

To briefly summarize, in this chapter, we consider two three-sensor sys-
tems that are practical in autonomous driving systems. Furthermore, we
make a hypothesis that, with appropriate design, we can accurately detect
the optical attacks on both of the three-sensor systems. In the following
discussions, we verify this hypothesis by elaborating on the mechanisms to
detect attacks on the two three-sensor systems, respectively.

3.3.2 Scenario 1: One LiDAR and Two Cameras

For this scenario, we denote the LiDAR as sensor S0, and denote two cameras
from the right to the left as S1 and S2, respectively. Accordingly, the data
generated by the sensors are denoted as D0, D1, and D2. The detection
system we design for this scenario is shown as the combination of Block A
and Block C in Fig. 3.4.

In our system illustrated in Fig. 3.4 (Block A & Block C), we designate
camera S2 as the reference camera to generate two disparity maps. Specifi-
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Figure 3.5 Distributions of disparity error E0,1,2 in normal case (cyan bars) and

in attack cases (red bars) for Scenario 1. (a) No attack vs. S0 attacked; (b) No

attack vs. S1 attacked; (c) No attack vs. S2 attacked; (d) No attack vs. S0, S1

attacked; (e) No attack vs. S0, S2 attacked; (f) No attack vs. S1, S2 attacked;

(g) No attack vs. S0, S1, S2 attacked.

cally, we set the image taken by the reference camera (i.e., D2) as the refer-
ence image, and then feed it with the image taken by the other camera (i.e.,
D1) to a depth estimation model to produce the first disparity map, denoted
as DM1,2, in which we include the disparity information at each pixel of the
reference image.

Here, we note that many algorithms have been developed in recent years
that can generate accurate disparity maps with camera images. For instance,
PSMNet [7] and DORN [20] are two recent algorithms based on deep learning.
In this chapter, we use the former one to produce disparity maps, since the
PSMNet model gives more accurate results over others.

In addition to DM1,2, we also project the depth information (i.e., point
cloud D0) obtained by LiDAR onto the reference image D2 to generate the
second disparity map, denoted as DM0,2. In this procedure, the depth infor-
mation in the point cloud D0 is converted to disparities by using Eqn. (3.1).
To generate all disparity maps in the same scale, f in the equation is set to
be the same as the focal length of the cameras, and b is set to be equal to
the baseline of the stereo vision formed by S1 and S2. Then, disparities are
projected onto D2.

To detect optical attacks, we compare the two disparity maps: DM1,2
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Figure 3.6 Detection rate varies with the designated false alarm rate r in each

attack case for Scenario 1. (a) S0 is attacked; (b) S1 is attacked; (c) S2 is attacked;

(d) S0 and S1 are attacked; (e) S0 and S2 are attacked; (f) S1 and S2 are attacked;

(g) S0, S1 and S2 are attacked.

and DM0,2. Since in the two procedures described above we use D2 as the
reference image, the two produced disparity maps have the same scale and
share the same view. Thus, we can compare them directly. Here, it shall be
noted thatDM0,2 contains sparse disparity information, since the distances in
the point cloud D0 are not densely measured. Therefore, in this comparison
procedure, we only compare pixels that have valid disparity in DM0,2. For
valid pixels, we take the KITTI stereo benchmark [42] as a reference and
design our own standard, in which a disparity inconsistency for pixel a is
counted if and only if

(
|DM0,2(a)�DM1,2(a)| > 3,
|DM0,2(a)�DM1,2(a)|

min(DM0,2(a),DM1,2(a))
> 0.05.

(3.2)

Based on the pixel-level disparity inconsistencies, we evaluate the dis-
parity error, denoted as E0,1,2, between DM0,2 and DM1,2. In particular,
the disparity error is defined as the ratio of the quantity of pixel-level
disparity inconsistencies over the total number of valid pixels.

Finally, to detect an optical attack, we need to evaluate the ranges of
disparity errors in normal cases and attack cases. We believe that the two
ranges are distinguishable and we can then use a threshold ✓0,1,2 to determine
whether there is an optical attack. In particular, we determine that one of
the three sensors is under attack if and only if E0,1,2 > ✓0,1,2.
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Table 3.1 Detection rate comparison between the method in our framework and

the baseline

Method Granularity
Avg. Detection Rate
Scenario 1 Scenario 2

Ours (r = 0%) Pixel-level 99.46% 99.94%
Ours (r = 1%) Pixel-level 99.89% 99.97%
Ours (r = 2%) Pixel-level 99.89% 100%
Ours (r = 3%) Pixel-level 99.91% 100%
Ours (r = 5%) Pixel-level 99.91% 100%

Baseline (IoU = 0.5) Object-level 65.32% 67.17%
Baseline (IoU = 0.7) Object-level 59.54% 63.39%

The threshold ✓0,1,2 is determined o✏ine based on the value distribution
of E0,1,2 when the three-sensor system is in a safe environment, since only
the correct data of optical sensors are available on an autonomous vehicle in
normal conditions. According to the statistical law, we use a large number
of samples of the disparity error to represent its real distribution in normal
cases and define a designated false alarm rate r to arbitrarily set r⇥100% of
them as virtual outliers, where r 2 [0, 1]. Then, the critical value separating
inliers from outliers is ✓0,1,2:

# samples of E0,1,2 > ✓0,1,2

# samples of E0,1,2
= r. (3.3)

In this manner, the threshold, which only moves within the value range of
disparity error samples, is determined by the value of r. Intuitively, to obtain
the best detection performance, we should maximize the detection rate and
minimize the designated false alarm rate. Hence, we show how the detection
rate varies when adjusting the threshold via r.

3.3.3 Experiments for Scenario 1

Setup

To validate the hypothesis for this scenario, we conduct extensive experi-
ments. We consider all possible attack cases where any sensor or any com-
bination of the three sensors gets attacked. We use the data of one LiDAR
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Figure 3.7 Distributions of disparity error E0,1,2 in normal case (cyan bars) and

in attack cases (red bars) for Scenario 2. (a) No attack vs. S0 attacked; (b) No

attack vs. S1 attacked; (c) No attack vs. S2 attacked; (d) No attack vs. S0, S1

attacked; (e) No attack vs. S0, S2 attacked; (f) No attack vs. S1, S2 attacked;

(g) No attack vs. S0, S1, S2 attacked.

and two cameras from the customized KITTI raw dataset [21] to produce af-
fected sensor data for each attack case. The production scheme is described
in Section 3.2.4. The PSMNet model used in the experiments is provided
by Wang et al. [62], which is trained on Scene Flow dataset [41] and KITTI
object detection dataset [22]. As for metrics, we measure the disparity error
distribution and the rate of correct detection for each attack case.

In the literature, there is no existing solution for optical attack detection.
Therefore, to compare our scheme with possible solutions, we implement
a possible baseline solution to optical attack detection that first extracts
object-level features from the data of two individual sensors respectively,
and then detects attacks by measuring the mismatches between the two sets
of features. Specifically for Scenario 1, we implement the baseline with the
backbone of PIXOR [68] for extracting object-level features from point
clouds and the backbone of Faster R-CNN [51] for extracting from images.
We set IoU to 0.5 and 0.7 for determining feature mismatches.

Results

The experimental results are shown in Fig. 3.5 and Fig. 3.6. In Fig. 3.5, we
compare the distributions of disparity errors between the normal case (i.e.,
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Figure 3.8 Detection rate varies with the designated false alarm rate r in each

attack case for Scenario 2. (a) S0 is attacked; (b) S1 is attacked; (c) S2 is attacked;

(d) S0 and S1 are attacked; (e) S0 and S2 are attacked; (f) S1 and S2 are attacked;

(g) S0, S1 and S2 are attacked.

no attack, in cyan bars) with each one of the seven possible attack cases (red
bars). We first observe that the disparity errors are smaller than 20% in most
normal cases. By comparison, the disparity errors in most attack scenarios
are larger than 25%. These results indicate that our detection scheme is
sensitive enough, so that there is almost no overlap between the distribution
in the normal case and the distributions in those attack cases.

In Fig. 3.6, we adjust the threshold ✓0,1,2 used to declare attacks by varying
the designated false alarm rate r, and evaluate the attack detection rate
versus r. As we can see from the figures, among seven attack scenarios, the
performance is perfect in five cases, where the detection rate hits 100% for
all possible values of r. And even in the non-perfect cases (i.e., (b) and (f)),
the proposed detection system can obtain more than 99.5% detection rate
with less than 5% false alarm. Such results confirm our hypothesis for such
a three-sensor system.

We also show the detection rate comparison between our proposed detec-
tion method (r  5%) and the baseline for Scenario 1 in Table 3.1, where we
can observe that our method outperforms the baseline by about 35% with IoU
= 0.5 and about 40% with IoU = 0.7. The reason is that our method detects
optical attack by measuring pixel-level disparity inconsistencies, which is
much denser and more fine-grained than the object-level detection used in
the baseline. In most cases where the attack only partially occludes impor-
tant objects or does not occlude them at all, the object-level detection is
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highly likely to fail, while our proposed method can still function normally.

3.3.4 Scenario 2: Three Cameras

For this scenario, we consider a three-sensor system that consists of three
cameras, denotes as S0, S1, and S2, from the right to the left. Similar to the
previous scenario, we also consider the data generated by the sensors as D0,
D1, and D2. The detection system that we design for this scenario is shown
as the combination of Block B and Block C in Fig. 3.4.

In the system illustrated in Fig. 3.4 (Block B & Block C), we designate
camera S2 as the reference camera to generate two disparity maps. In our
experiments, we find it more convenient to implement our detection scheme
when the leftmost or rightmost camera is used as the reference camera.

Since the sensor data of this scenario are all images, to generate the two
disparity maps, we feed D2 with D0 and D1 to the depth estimation model,
respectively. It shall be noted that, since the distance between S0 and S2

is usually di↵erent from the distance between S1 and S2, we need to adjust
the disparity in DM0,2 by updating the baseline b accordingly. After the
disparity maps DM0,2 and DM1,2 are generated, the rest of the procedures
in the detection method are the same as those in the previous scenario.

3.3.5 Experiments for Scenario 2

Setup

Here, we use the data of three cameras in the customized KITTI raw dataset [21]
and also consider all possible attack cases. The baseline method is imple-
mented with the backbone of Faster R-CNN [51]. The rest of settings are
the same as those in the experiments for Scenario 1.

Results

We show the experiment results in Fig. 3.7 and Fig. 3.8. In Fig. 3.7, we
compare the distributions of disparity errors between the normal case (i.e.,
no attack, in cyan bars) with each one of the seven possible attack cases (red
bars). Similar to Scenario 1, we observe that the disparity errors are less
than 10% in virtually all normal cases. By comparison, the disparity errors
in 99% of attack scenarios are larger than 12.5%.
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In Fig. 3.8, we vary the threshold ✓0,1,2 used to declare attacks via r,
and evaluate the attack detection rate versus the designated false alarm rate.
We can observe that the detection performance is perfect in all cases, where
the detection rate remains 100% when r varies from 0 to 1. Comparing the
results in Scenario 2 with results in Scenarios 1, we notice that the detection
performance in scenario 2 is slightly better. We believe this is due to the
facts that the disparity maps in this scenario are generated using the same
method and there are more valid pixels in the comparison.

In Table 3.1, the performance comparison for this scenario still shows that
our proposed detection method outperforms the baseline by a large margin
(more than 30%), which again shows the merit of pixel-level detection.

3.3.6 Empirical Findings

To briefly summarize, the findings from the attack detection experiments for
the two three-sensor systems are listed as follows:

• The experimental results confirm our hypothesis that there exists a
detection system that can detect optical attacks on the two three-sensor
systems with high accuracy and low false alarm rate.

• The detection rate is insensitive to the designated false alarm rate. As
long as the detection rate is maintained at a high level, the designated
false alarm rate should be set as low as possible, empirically less than
5%.

• In those two three-sensor systems, any sensor or any combination of
sensors being attacked can cause the disparity error beyond the thresh-
old.

Based on these findings, we further develop the identification approach
for the proposed framework.

3.4 Attack Identification

In this section, we present the second procedure of our framework which
identifies the compromised sensors in a system with one LiDAR S0 and n

cameras, namely, S1 to Sn from the right to the left, where n � 3, based on
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the empirical findings from the detection method. This method is inspired
by Error Correction Codes (ECC) and can achieve the identification as long
as there are no more than n � 2 sensors being attacked simultaneously. In
addition, we also demonstrate the proof of the correctness of our identification
method, as well as show its e↵ectiveness and accuracy via experiments.

We now introduce a few definitions that are used in the rest of this section.
For every sensor Si, its state si can switch between normal state and attack
state

si =

(
1, if Si is attacked,

0, otherwise,
(3.4)

where i 2 {0, 1, · · · , n}, n � 3. The sensor state vector in the system is
defined as:

s := [s0, s1, · · · , sn], (3.5)

which is the hidden ground truth that we try to identify.
For disparity error Ei,j,k among sensors Si, Sj, and Sk, we use ei,j,k to

indicate whether Ei,j,k exceeds the corresponding threshold ✓i,j,k in which

ei,j,k =

(
1, if Ei,j,k > ✓i,j,k,

0, otherwise,
(3.6)

where i, j, k 2 {0, 1, · · · , n}, i < j < k. And similarly, we use the disparity
error state vector e to represent the states of disparity errors of three-sensor
combinations in the system.

Since the system consists of one LiDAR and n cameras, the combination
of any three sensors from it must be either one LiDAR with two cameras or
three cameras. According to the empirical finding drawn from the experi-
ments in the previous section, any sensor or any combination of sensors from
such three-sensor sets being compromised leads to the corresponding dispar-
ity error higher than the threshold. Therefore, based on the definitions in
Eqn. (3.4) and Eqn. (3.6), we have

ei,j,k = (si _ sj _ sk), (3.7)

where i, j, k 2 {0, 1, · · · , n}, i < j < k, and _ is logical OR operation.
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3.4.1 Calculation of Disparity Error State Vector

Given n + 1 sensors, we use the leftmost sensor Sn as the reference camera
and calculate disparity error state vector

e := [e0,1,n, e0,2,n, · · · , en�2,n�1,n], (3.8)

where n � 3. In the calculation, the disparity maps generated by Sn with
every remaining sensor are compared with each other using the same standard
described by Eqn. (3.2). Then, by the definition in Eqn. (3.6), e is obtained
via thresholding the resulted disparity errors from comparison. We also show
this calculation process in the form of pseudocode in Algorithm 1 that takes
the data of one LiDAR and n cameras and a list of thresholds as inputs
and outputs the disparity error state vector e . Specifically, it first generates
n disparity maps with the sensor data and compares each two of them to
obtain disparity errors, and then calculates e by encoding disparity errors
with thresholds.

Note that the thresholds for calculating e are also determined o✏ine using
one designated false alarm rate r. The approach is similar as in the detection
procedure. For every disparity error, we collect su�cient samples when the
system is safe and consider r ⇥ 100% of samples as virtual outliers. The
thresholds are then set to the maximal values of inliers. Hence, Eqn. (3.3)
can be rewritten as:

# samples of Ei,j,n > ✓i,j,n

# samples of Ei,j,n
= r, (3.9)

where r 2 [0, 1], i, j 2 {0, 1, · · · , n�1}, i < j. Unlike the detection rate which
is insensitive to r, our subsequent experiments indicate that the identification
rate drops linearly with r increasing and the best identifying performance is
achieved when r = 1%.

3.4.2 Identification of Sensor State Vector

We now elaborate on how to infer s according to e . We consider the following
three cases of e :

• If all elements in e are 0s, according to Eqn. (3.7) and Eqn. (3.8), si = 0
for 0  i  n. In other words, no sensor is attacked.

40



Algorithm 1 Calculation of disparity error state vector e
Input: D : a list of sensor data with length equal to |D |, where D0 is point

cloud and the rest are images; ✓: a list of thresholds.
Output: e : the disparity error state vector.

1 select Dn as reference image, where n = |D |� 1
2 get disparity map DM0,n using D0 and Dn (Scenario 1 in Section 3.3)
3 for i 1 to n� 1 do
4 get disparity map DMi,n using Di and Dn (Scenario 2 in Section 3.3)

5 for i 0 to n� 2 do
6 for j  i+ 1 to n� 1 do
7 get disparity error Ei,j,n by comparing DMi,n with DMj,n (Sec-

tion 3.3)
8 if Ei,j,n exceeds threshold ✓i,j,n then
9 assign 1 to disparity error state ei,j,n

10 else
11 assign 0 to ei,j,n

12 return e

• If only some elements in e are 0s, we have the following Lemma 1 to
identify all attacked sensors.

• If all elements in e are 1s and no more than n � 2 sensors are at-
tacked simultaneously, we can repeatedly use Lemma 1 and Lemma 2
to identify all attacked sensors.

Lemma 1. In a system with n + 1 sensors, if there exist i0, j0 such that
ei0,j0,n = 0, then si = ei,i0,n for 0  i < i0, and si = ei0,i,l�1 for i0 < i < n.

Proof. If there exist i0, j0 such that ei0,j0,n = 0, according to Eqn. (3.7), we
can have:

ei0,j0,n = (si0 _ sj0 _ sn) = 0 (3.10)

which implies
si0 = sj0 = sn = 0 (3.11)

Now we only need to focus on the state of s0, s1, . . . , sn�1.
For any i 2 {0, 1, · · · , i0 � 1},

ei,i0,l�1 = (si _ si0 _ sn) = (si _ 0 _ 0) = si, (3.12)
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Figure 3.9 Distributions of disparity error E0,1,3 (1st row), disparity error E0,2,3

(2nd row) and disparity error E1,2,3 (3rd row) in normal scenario (1st column)

and in attack scenarios (2nd–5th columns). Cyan bars mean that the disparity

errors in a scenario involve no attacked sensor, while red bars indicate that the

disparity errors in a scenario involve attacked sensor. (a) No disparity errors exceed

thresholds, so e = [0, 0, 0] indicating no optical attack; (b) E0,1,3 and E0,2,3 exceed

thresholds, so e = [1, 1, 0] indicating that S0 is attacked; (c) E0,1,3 and E1,2,3

exceed thresholds, so e = [1, 0, 1] indicating that S1 is attacked; (d) E0,2,3 and

E1,2,3 exceed thresholds, so e = [0, 1, 1] indicating that S2 is attacked; (e) All three

disparity errors exceed thresholds, so e = [1, 1, 1] indicating that S3 is attacked.

and for any i 2 {i0 + 1, i0 + 2, · · · , n� 1},

ei0,i,n = (si0 _ si _ sn) = (0 _ si _ 0) = si. (3.13)

Lemma 1 shows that we can identify the sensor state vector s if at least
one element in e is 0. For the case where all elements in e are 1s, we have
the following lemma.

Lemma 2. In a system with n + 1 sensors, when there are no more than
n� 2 sensors being compromised simultaneously, if the elements of e are all
1s, then sn = 1.

Proof. Since there are no more than n�2 sensors being attacked, the states of
at least three sensors are 0s. If Sn is normal, then there exist i⇤ and j

⇤, where
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Figure 3.10 Identification rate varies with the designated false alarm rate r in each

attack scenario. (a) S0 is attacked; (b) S1 is attacked; (c) S2 is attacked; (d) S3 is

attacked.

i
⇤
< j

⇤, such that sensors Si⇤ and Sj⇤ are normal, i.e., si⇤ = sj⇤ = sn = 0.
In this case, ei⇤,j⇤,n = 0, which contradicts the fact that all the elements of
e are 1s. Therefore, sn = 1.

When all elements of e in a system with n + 1 sensors are 1, though
we cannot directly find out the states of all sensors, Lemma 2 can identify
the last sensor’s state. After that, we can virtually remove the last sensor
and consider a system with n sensors. We recalculate the e by Algorithm 1
for such n sensors, then determine s according to Lemma 1 and Lemma 2.
We repeat this process until the states of all sensors are identified. We
also present this identification algorithm as pseudocode in Algorithm 2 that
takes the same inputs as Algorithm 1 and outputs a list of attacked sensors.
Specifically, it begins with calculating e using Algorithm 1 with the inputs,
and then infers the sensor state vector s using Lemma 1 when some elements
in e are 0s. When all elements in e are 1s, it first infers sn, the state of the
reference camera, using Lemma 2, and then excludes the data of the reference
camera from the inputs and infers the rest of sensor states by rerunning
Algorithm 2 with the updated inputs.

3.4.3 Experiments

Setup

To verify the e↵ectiveness and evaluate the precision of our identification
scheme, we conduct substantial experiments. Since the identification scheme
is designed to be in a form of recursion, the experiments here are for the
base case where a system consists of one LiDAR (S0) and n = 3 cameras (S1,
S2, and S3). And according to the constraint, there is at most one attacked
sensor in the system.
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Algorithm 2 Identification of sensor state vector s
Input: D : a list of sensor data with length equal to |D |, where D0 is point

cloud and the rest are images; ✓: a list of thresholds.
Output: A: the list of compromised sensors.

1 select Dn as reference image, where n = |D |� 1
2 calculate e using Algorithm 1 with D and ✓
3 if there exists 1 in e then
4 if there exists 0 in e then

// use Lemma 1 to infer s
5 find i0, j0 which satisfy ei0,j0,n = 0
6 for i 0 to n� 1 do
7 assign min(i, i0) to k1, max(i, i0) to k2

8 if ek1,k2,n = 1 and k1 6= k2 then
9 sensor state si is 1

10 push attacked sensor Si into A

11 else
// use Lemma 2 to infer sn

12 sensor state sn is 1
13 push attacked sensor Sn into A

// infer rest sensors recursively
14 if n > 3 then
15 remove Dn from D
16 go to line 1 to rerun with updated D

17 return A

In the experiments, we consider the normal scenario and all possible at-
tack scenarios where each one of the four sensors gets attacked. We use
the data of one LiDAR and three cameras from the customized KITTI raw
dataset [21]. To generate the compromised sensor data for each attack sce-
nario, we do the same as in Section 3.2.4. The depth estimation model is
provided by [62]. As for metrics, we measure the disparity error distribution
and the rate of correct identification for each attack scenario.
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Table 3.2 Identification rate at particular values of the designated false alarm rate

in attack scenarios

r
Attacked Sensor

Average
S0 S1 S2 S3

0% 99.80% 96.40% 93.40% 95.60% 96.30%
1% 98.80% 97.00% 97.60% 99.20% 98.15%
2% 98.00% 96.80% 97.20% 99.20% 97.80%
3% 96.60% 96.00% 96.20% 99.80% 97.15%
5% 94.80% 94.00% 94.20% 100% 95.75%

Results

We present the experimental results in Fig. 3.9, Fig. 3.10, and Table 3.2. In
Fig. 3.9, the three rows of sub-figures represent the distributions of disparity
error E0,1,3 (1st row), disparity error E0,2,3 (2nd row), and disparity error
E1,2,3 (3rd row), respectively. And the columns in Fig. 3.9 represent five
scenarios.

In Fig. 3.9, we can first compare the disparity errors in each row. Similar
to the results in the last section, the results clearly illustrate that the distri-
bution of disparity errors can help to detect whether there is an attack. For
example, in the first row for E0,1,3, when there is no attack on S0, S1, and S3,
the disparity errors (cyan bars) are mostly less than 23%. By comparison,
the disparity errors (red bars) are larger than 23% when any of the sensors
is attacked. Such results a�rm the feasibility and correctness of defining
attacks according to the disparity error state. Three sub-figures in each of
the five attack scenarios clearly show that there is a unique pattern of the
combination of E0,1,3, E0,2,3, and E1,2,3 for each attack scenario. For instance,
when there is no attack launched, the three disparity errors are all within
certain boundaries, representing the disparity error state vector e = [0, 0, 0].
And if any one of the sensors is attacked, the disparity errors involving that
sensor will exceed boundaries, leading to another unique e .

In Fig. 3.10, we vary the thresholds by adjusting the designated false
alarm rate r and compute the corresponding identification rate in four attack
scenarios. It is obvious that, if the attacked sensor is not the reference, then
the identification rate drops linearly when r increases from 0 to 1. On the
other hand, when the reference sensor S3 is attacked, then the identification
rate remains very close to 100%.
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Figure 3.11 Sensitivity of our framework and AP of PointRCNN when the attack

is against LiDAR. (a) Detection rate for attacks against LiDAR varies with the

width of bogus signal; (b) Average precision of PointRCNN varies with the width

of bogus signal.

Such observations suggest that choosing a small r may lead to the best
performance overall. To identify the best r, we conduct some experiments
to investigate the impact of r, when it is within the range of 0 to 5%. The
numerical results are shown in Table 3.2. As we can see, the best average
identification rate for the four attack scenarios occurs at r = 1%.

3.4.4 Discussion

Though the identification method of our framework can accurately identify
attacked sensors, it is limited to the condition where no more than n � 2
sensors are attacked simultaneously in a system with n+1 sensors. We plan
to address this limitation through cross-vehicle sensing data validation in our
future studies.

3.5 Framework Sensitivity

With the best designated false alarm rate r determined, we conduct further
experiments to investigate how sensitive our framework is, namely, for optical
attacks with what range of settings (width of bogus signal, size of facula) our
framework works e↵ectively. Empirically, the milder optical attacks are, the
more di�cult they get detected. Meanwhile, we also measure how much the
perception function of AVs is influenced by the optical attacks with di↵erent
settings using state-of-the-art object detection algorithms. Those algorithms
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Figure 3.12 Sensitivity of our framework and AP of YOLOv3 when the attack

is against camera. (a) Detection rate for attacks against camera varies with the

percentage of the area contaminated by facula; (b) Average precision of YOLOv3

varies with the percentage of the area contaminated by facula.

usually possess a certain degree of resistance to minor optical attacks, so our
framework does not have to be universally sensitive.

In this section, we use experiments to demonstrate that our framework
has excellent sensitivity to the attacks on LiDAR with settings that object
detection model cannot overcome. As for the attacks on camera, our frame-
work is also sensitive in most cases, but shows limit when the attack is too
mild. The experiments consist of two parts: the first part is for the sensitiv-
ity to the attacks on LiDAR, and the second part for the sensitivity to the
attacks on camera.

3.5.1 Metrics

To measure the sensitivity, we use the detection rate of our framework with
r = 1%, since detection rate can also reflect the performance of identification
procedure. As described in Section 3.4, the identification procedure of our
framework is directly developed upon multiple detection processes, so the
identification rate is highly correlated with the detection rate.

As for evaluating the corresponding performance of object detection al-
gorithms used in AVs, we follow the KITTI object detection benchmark [22]
and calculate the average precision of vehicle detection with IoU threshold
equal to 70%.
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3.5.2 Experimental Setup

We conduct our experiments on the dataset provided in the KITTI object
detection benchmark [22] which contains sensor data of one LiDAR and two
cameras. As described in Section 3.2.4, we divide the labeled part of the
dataset into training set and test set. The training set is used to train the
object detection models, while the test set is for generating compromised
sensor data.

To find out the sensitivity of our framework to the optical attacks on
LiDAR, we produce five a↵ected point clouds for every set of sensor data in
the test set. The five a↵ected point clouds contain a bogus signal with a width
of 0.5 meter, 1.0 meter, 1.5 meters, 2.0 meters, and 2.5 meters, respectively.
And the object detection algorithm chosen for this part of experiments is
PointRCNN [55], a state-of-the-art 3D object detection algorithm that takes
a point cloud as input.

In term of the experiment setup for evaluating sensitivity to the attacks
on camera, we generate six pairs of compromised stereo pictures for each set
of sensor data in the test set. The left pictures of the six pairs are overlaid
with a Gaussian facula with radius of 37.5 pixels, 75 pixels, 112.5 pixels,
150 pixels, 187.5 pixels, and 225 pixels, respectively. And the corresponding
percentages of the contaminated area in images are 0.95%, 3.79%, 8.54%,
15.18%, 23.71%, and 34.15%. The object detection algorithm for this part
of experiments is YOLOv3 [48], which is one of the most popular real-time
object detection algorithms using images as input.

In the experiments, we feed the compromised sensor data to our frame-
work and the selected object detection model, and then evaluate them via
the aforementioned metrics. The PSMNet model used in the framework is
provided by [62].

3.5.3 Experiment Results

Sensitivity to the Attacks on LiDAR

As shown in Fig. 3.11, with the increase of the width of the bogus signal,
the detection rate of our framework surges, while the average precision of
PointRCNN declines. The AP of PointRCNN decreases very slightly when
the width of the bogus signal is within 1.0 meter, which implies that PointR-
CNN exhibits some resistance to minor disturbing signals. On the other
hand, when the size of the bogus signal is larger, the average precision starts
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dropping rapidly. However, it should be noted that when the width is at
1.5 meters, the total decline of AP is only 0.06, while the detection rate of
our framework already reaches nearly 100%. These results show clearly that
our framework is highly sensitive to the attacks on LiDAR that cannot be
mitigated by object detection algorithms.

Sensitivity to the Attacks on Camera

The experiment results for this part are illustrated in Fig. 3.12. The tenden-
cies of the detection rate of our framework and the AP of object detection
model are similar as those in the first part of the experiments. Particularly,
when the percentage of the contaminated area is within the range of 5% to
15%, although our framework has a small detection rate, the AP of YOLOv3
maintains at a high level, which means that the perception has not been com-
promised due to small attacks. When the percentage of the contaminated
area in images increases to 23.71%, the detection rate of our framework sur-
passes 90%. In the meantime, the AP of YOLOv3 drops significantly to
54.12%. These results suggest that our framework has a strong sensitivity to
the attacks on camera when the contaminated area in images is greater than
20%. Less than that, the framework may show some limitations.

3.6 Conclusion

In this chapter, we have systematically investigated the mitigation of attacks
on optical devices (LiDAR and camera) that are essential to perform accu-
rate object and event detection and response (OEDR) tasks in autonomous
driving systems. Specifically, we proposed a framework to detect and iden-
tify sensors that are under attack. For the attack detection, we considered
two common three-sensor systems, (1) one LiDAR and two cameras, and (2)
three cameras, and we developed e↵ective procedures to detect any attack on
each of them. Using real datasets and the state-of-the-art machine learning
model, we conducted extensive experiments confirming that our detection
scheme can detect attacks with high accuracy and a low false alarm rate.
Based on the detection models, we further developed an identification model
that is capable of identifying up to n � 2 attacked sensors in a system with
one LiDAR and n cameras. For the identification procedure, we proved its
correctness and used experiments to validate its performance. At last, we
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investigated the sensitivity of our framework and showed its excellence in
this aspect.

50



Chapter 4

Sensor Data Validation for
Connected Autonomous
Vehicles

4.1 Introduction

In the foreseeable future, it is expected that autonomous vehicles will be a
part of our daily tra�c. By then, autonomous vehicles will have already
started to evolve again, from single-vehicle systems to collaborative multi-
vehicle systems. The combination of autonomous driving, Multi-access Edge
Computing (MEC), and 5G network technology can be a strong candidate
for the V2X-based collaborative autonomous driving system, which consists
of connected vehicular nodes and base station nodes.

However, the collaboration of autonomous vehicles does not eliminate the
security threats to individual autonomous vehicles, but raises even higher re-
quirements for safety and security instead, since the environment perception
results produced by one autonomous vehicular node can be shared among
all the connected vehicles in the same collaborative system. In other words,
one perception error could lead to disasters for the whole collaborative sys-
tem. Therefore, security and safety threats to autonomous driving should be
reconsidered in the multi-vehicle perspective.

In this study, we focus on detecting the threat of optical attacks to Li-
DARs for connected autonomous vehicles. Although there are previous de-
tection methods designed for single autonomous vehicles, e.g., the method
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proposed by Zhang et al. [71], they only suit single-vehicle systems and do not
take advantages of the multi-vehicle collaborative system. Simply deploying
the previous countermeasures on every vehicular node in the collaborative
system does not produce more safety bonus.

In this chapter, we propose a data validation method by leveraging point
clouds from multiple neighboring vehicular nodes in a collaborative autonomous
driving system. To perform the data validation task for multiple connected
autonomous vehicles, there are two major challenges: (1) since huge amount
of point clouds are generated every second, transmitting them entirely would
pose a great burden on the 5G network; (2) the scans of objects in point
clouds, e.g., vehicles, are usually severely incomplete at the unlit side, causing
inaccurate validation. To tackle the first challenge, we propose to only vali-
date the scans within validation regions which are the proposals produced by
point cloud region proposal networks, such as PointNet++[45]. This largely
reduces the transmission overhead and does not overlook potential informa-
tion distortions caused by optical attacks. In regard to the second challenge,
we fill the scan of objects with a symmetrical copy of it according to the
symmetry of the objects. Furthermore, we conduct preliminary experiments
to evaluate our method. And the results show that our method can detect
optical attacks against LiDARs with a fair accuracy and a relatively low false
positive rate for connected autonomous vehicles.

The rest of this chapter is organized as follows. In Section 4.2, we first
briefly introduce the collaborative autonomous driving system that we con-
sider in this study. Then, we present the threat model in Section 4.3. Next,
we elaborate on our data validation method in Section 4.4 and demonstrate
our experiments in Section 4.5. Finally, we conclude this chapter in Sec-
tion 4.6.

4.2 System Model

In this preliminary study, we consider a V2X-based collaborative autonomous
driving system deployed with 5G-based Multi-access Edge Computing (MEC)
technology. The system consists of multiple connected vehicular nodes and
base station nodes. As for the vehicular nodes, they are equipped with full
autonomous driving capability primarily based on cameras and LiDARs. In
the aspect of navigation, the vehicular nodes are equipped with GPS and high
definition map (HD map), which empower them with good self-localization
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capability. In terms of the base station nodes, they are equipped with abun-
dant computation power and can handle big network throughput. And the
5G network enables low latency communication among the system nodes.

4.3 Threat Model

In this study, we mainly consider the optical attacks against LiDARs. Basi-
cally, this type of attack is launched by emitting laser beams with the same
frequency as used by the victim LiDARs, so that the point clouds generated
by the victim LiDARs are injected with spoofed points [44, 56]. To spoof a
large amount of points and allocate them according to specific shapes, the
time sequence of the victim LiDARs must be given in advance, and the tim-
ing to emit laser beams for attacking must be accordingly planned carefully
and controlled very precisely [6]. Due to the di�culty in launching such
attacks, we consider the attack cases where the attacker only attacks one
of the neighboring vehicular nodes at a time. And the consequence of such
optical attacks is that the victim autonomous vehicular node could detect
ghost objects, possibly causing wrong driving decisions.

4.4 Data Validation Method

In this section, we elaborate on the details of our proposed data validation
method. Specifically, we first briefly explain the preprocessing phase for
data preparation. Then, we elaborate on selecting validation regions and
completing scans within validation regions. Next, we introduce surface mesh
generation and discretization. Finally, we explain the detection of the optical
attacks against LiDARs through comparing the discretized surface meshes
and thresholding. The first two steps are executed on vehicular nodes, while
the last two steps are done by the base station node. The structure of our
proposed method is illustrated in Fig. 4.1.

4.4.1 Preprocessing

As mentioned in Section 4.2, we consider connected autonomous vehicles in
a 5G and MEC based collaborative system, in which vehicular nodes and
base station nodes are equipped with computation capability. Since all of
the harvested raw sensor data and the produced data from each autonomous
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Figure 4.1 The structure of the data validation method for the multi-autonomous-

vehicle scenario.

vehicular node are based on the node’s own coordinate system, the data must
be aligned first before used for validation.

In this study, we convert all the coordinate systems of vehicular nodes
and base station nodes of the collaborative system to the world coordinate
system. We assume that autonomous vehicular nodes are equipped with high
definition map (HD map) and capable of accurate self-localization. In other
words, every autonomous vehicular node can calculate a transformation ma-
trix Tr = (R|t) consisting of a translation vector t and a rotation matrix
R using image data, point clouds, GPS data, and HD map, so that every
vehicular coordinate system can be transformed to align with the world co-
ordinate. In the subsequent phases, we use the transformation matrix Tr to
align LiDAR scans and validation regions.
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Figure 4.2 Validation regions (boxes) in the bird’s eye view of a point cloud.

4.4.2 Validation Regions and Scan Completion

On one hand, to validate the genuineness of point clouds by leveraging sensor
data sources of multiple neighboring vehicular nodes, the point clouds must
be transmitted to a nearby MEC base station node to be processed together.
On the other hand, transmitting entire frames of point clouds from each
neighboring vehicular node to one nearby base station node causes great
transmission overhead to the 5G network, considering the facts that huge
amount of point clouds are generated every second. In addition, information
distortions caused by optical attacks can appear anywhere in a point cloud,
so we must scale down the data for validation and maintain information
distortions still detectable at the same time.

To overcome this challenge, we use point cloud region proposal network
(RPN), e.g., PointNet++ [45], to generate proposals, and propose to only
validate the scans within the proposals. The rationale of selecting the propos-
als as validation regions is three-fold. First, common paradigm of processing
point clouds for autonomous driving is two-staged schemes consisting of a re-
gion proposal network and a regression network, so using proposals generated
by an RPN for validation brings no extra computation overhead. Second,
since the optical attacks can cause detection models to detect ghost objects
or miss detecting real objects, and since all the final detected bounding boxes
are chosen from generated proposals, validating scans only within proposals
never overlooks potential information distortions caused by optical attacks.
Third, generating proposals is very fast. According to Xu et al. [66], the time
for generating proposals with RPN is less than 10% of the whole processing
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Figure 4.3 Points in the validation region before and after mirroring. The scan of

the vehicle is severely incomplete at the unlit side (bottom right portion of the

first figure) before the scan completion. After the mirroring operation according

to the symmetry of the vehicle, a part of the void portion is filled with points (the

second figure).

time of a two-staged point cloud 3D detection scheme.
In addition, when LiDARs scan objects, e.g., vehicles, only one side of

objects is usually recorded in a frame of point cloud, resulting in zero in-
formation about the unlit side of objects, as shown in the first sub-figure in
Fig. 4.3. And this causes troubles in surface mesh generation and validation
accuracy. The reason is that, due to the information vacuum of the unlit
side of objects, the size of the surface meshes generated from the propos-
als is much smaller than the proposal size, so the area for comparison and
thresholding (the overlap between two discretized surface meshes) is not large
enough, causing inaccurate validation.

To overcome this challenge, we adopt a mirroring technique. Specifically,
we make a symmetrical copy of the scan of objects in every proposal according
to the object symmetry, and concatenate it with the original scan, which we
call mirroring, as shown in the second sub-figure in Fig. 4.3. As we can
observe, after the mirroring operation, a large portion of the information
vacuum area is filled with points, which enlarges the validation area when
comparing two discretized surface meshes, and in consequence boosts the
validation accuracy.

To briefly summerize the first two steps, each vehicular node first performs
preprocessing operation and calculate its transformation matrix. Then, they
use point cloud region proposal network to generate proposals. Next, they
send the proposal regions along with the transformation matrix to the base
station node. After converting the received proposals to the world coordinate
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system and making a quick summary, the base station node distributes the
complete set of proposal regions to each neighboring vehicular node. At last,
each vehicular node crops the point cloud according to the complete set of
proposal regions, performs mirroring operation within each proposal, and
send all the proposals with cropped point cloud to the base station node.

4.4.3 Surface Mesh Generation and Discretization

After receiving the complete set of cropped point clouds from each neigh-
boring vehicular node, the base station generate a surface mesh smi,j for
proposal region pri and the vehicular node vnj. There are many excellent al-
gorithms for surface mesh generation from point cloud, e.g., Point2Mesh [27].
The first reason why we converts point clouds to surface meshes is that sur-
face meshes can approximately represent the semantic information contained
in point clouds, which is the surface of objects measured by LiDARs, while
a set of points in point clouds do not show semantics directly. And the sec-
ond reason is that surface meshes can be transformed to distributions which
can be e�ciently compared with each other to obtain the distances among
them, while directly comparing the point clouds poses great computational
overhead to the base station node.

After the surface meshes are generated, we discretize the surface meshes
into 2D grids with resolution of 0.1 meter, the same resolution as used in [13].
For each grid, the value is computed as the height of the grid center. The
purpose of the discretization is to further downscale the comparison space to
save computation power.

4.4.4 Comparison and Thresholding

Finally, we perform the comparison and thresholding on the discretized sur-
face meshes. The method is similar to that in Chapter 3. First, for validating
the data inside a proposal region pri, we need at least three discretized sur-
face meshes, denoted as dsmi,j1 , dsmi,j2 , and dsmi,j3 , from three di↵erent
vehicular nodes, vnj1 , vnj2 , and vnj3 . By comparing them with each other,
we can obtain the distances disti,j1,j2 , disti,j1,j3 , disti,j2,j3 . For example, the
distance between dsmi,j1 and dsmi,j2 is measured as:

disti,j1,j2 =

P
g2G |dsmg

i,j1 � dsm
g
i,j2 |

|G| , (4.1)
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G = {g : |dsmg
i,j1 � dsm

g
i,j2 | > ✏}, (4.2)

where g denotes girds in dsm, ✏ is the average distance among discretized
surface meshes of the ground, and |G| denotes the size of G. Since every
validation region contains scan of the ground, the equation 4.2 indicates that
we only take into account the grids where the grid-level distance between
two discretized surface meshes is larger than ✏, to avoid the final distance
being severely normalized by the grids containing only scan of the ground.
Then, we identify the vehicular node that is under attack by observing which
distances surpass the threshold ✓. For example, if the vehicular node vnj1 is
attacked, the distances disti,j1,j2 and disti,j1,j3 would be larger than ✓, while
disti,j2,j3 < ✓. For the cases where more than three vehicular nodes are
involved, we can apply the algorithms in Section 3.4 to identify the attacked
nodes.

Similar as in Chapter 3, the threshold ✓ is determined o✏ine in attack-free
cases, based on the value distribution of the distances and the designated false
positive rate r. To this end, a large amount of samples of normal distances
(generated in attack-free cases) are needed. And r represents the percentage
of the samples that are falsely considered as outliers. By setting r, we can
control ✓. We can write the relation between the ✓ and r as:

# samples of dist > ✓

# samples of dist
= r. (4.3)

4.5 Experiments

In this section, we conduct some preliminary experiments to evaluate our data
validation method. At first, we briefly introduce the dataset we use for the
experiments and the experimental setups. Then, we present the preliminary
experiment results in detail. And the preliminary results show that our data
validation method can detect the optical attacks against LiDARs with a fair
accuracy.

4.5.1 Dataset

In this preliminary study, we use the KITTI raw dataset [21] to simulate
the scenario of multiple connected autonomous vehicles. To this end, we
specifically choose the recordings that only contain static objects from the
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dataset. And each time we select three frames of point clouds in temporal
order from the recordings. The time interval between adjacent two frames is
0.5 seconds. Since only the ego-vehicle was moving when point clouds were
recorded, we can use such three selected frames of point clouds to simulate the
three frames of point clouds recorded at the same time from three vehicular
nodes at di↵erent positions.

4.5.2 Setups

In this preliminary study, we consider the attack cases where the attacker
attacks one of the vehicular nodes by injecting fake points into its point
clouds, so that the victim vehicular node may detect ghost vehicles. To forge
such compromised point clouds, we randomly select LiDAR scans of real
vehicles and allocate them at random positions in attack-free point clouds.
As for the point cloud region proposal network used in our method, we choose
PointNet++ [45]. And in terms of the surface mesh generator, we select
Point2Mesh [27]. We sample the distances among the discretized surface
meshes of the ground and set ✏ = 0.04. We conduct the experiments for both
the attack-free cases and the attack cases, and report the results in the next
subsection.

4.5.3 Results

We present the preliminary experiment results in Fig. 4.4. In Fig. 4.4a, we
compare the distance distributions of the discretized surface meshes between
the attack-free cases (blue bars) and the attacked cases (orange bars). We
first observe that the distances among the discretized surface meshes are
smaller than 0.8 in the majority of attack-free cases. By comparisons, the
distances in most attacked cases are larger than 0.8. These results suggest
that our data validation method demonstrates good sensitivity, so that there
is only a relatively small overlap between the distribution of attack-free cases
and the distribution of attacked cases.

In Fig. 4.4a, we adjust the threshold ✓ used for the declaration of attacks
by changing the designated false positive rate r. As we can observe, when
r = 0.1, the detection rate is very close to 70%. And when we set r to
0.3, the detection rate hits over 90%. These results indicate that our data
validation method can achieve a fair detection rate when the false positive
rate is relatively low.
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(a) (b)

Figure 4.4 Preliminary experiment results of the data validation for the the multi-

autonomous-vehicle scenario. In (a), we show the distance distribution of the

discretized surface meshes in the attack-free cases and the attacked cases. In (b),

we illustrate how the detection rate varies with the designated false positive rate.

4.6 Conclusion

In this chapter, we addressed the data validation task for connected au-
tonomous vehicles. Specifically, we proposed a data validation method which
leverages multiple point clouds from di↵erent neighboring vehicular nodes.
On one hand, we tackled the challenge of transmission overhead caused by
large data size by only validating scans within validation regions which are
the proposals produced by point cloud RPN. On the other hand, we over-
come the challenge of severely incomplete scans of objects within proposals
by filling them with points according to the symmetry of objects. At last,
we conducted some preliminary experiments and demonstrated the results
of comparing the distance distributions of discrete surface meshes between
attack-free cases and attacked cases and showed how detection rate varies
with the designated false positive rate. The results showed that our method
can detect optical attacks against LiDARs with a fair accuracy and a rela-
tively low false positive rate for multiple connected autonomous vehicles.
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Chapter 5

Impact Evaluation of
Adversarial Attacks on Driving
Safety

5.1 Introduction

Over the past decade, autonomous driving has gained significant develop-
ments and demonstrated its great commercial potentials [15, 29]. The com-
mercial potentials have attracted enormous investment as well as various ma-
licious attacks [50, 63], for example, close-proximity sensor attacks, remote
cyberattacks, perturbation attacks, and patch attacks.

Environment perception and other tasks of autonomous driving systems
heavily rely on deep learning models. Researchers have demonstrated that
adversarial examples, which are originally designed to a↵ect general-purpose
deep learning models, can also be used to cause malfunctions in autonomous
driving tasks [75, 46, 19, 38, 32, 59, 10, 74, 40, 6]. In these studies, researchers
usually use the decline of accuracy, or the erroneous rate increase of the deep
learning models, to measure the e↵ectiveness of attacks. Amplified by media
reports, these attacks are casting cloud and posing psychological barriers to
the broader adoption of autonomous driving [58].

From the perspective of autonomous driving, however, the ultimate con-
cern is driving safety. Without a doubt, the inaccurate detection results of
a deep learning model in the presence of attacks may impact driving safety,
and in some situations, misdetection of tra�c signs [19] might have disas-
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trous consequence. Nevertheless, driving safety is a combined e↵ort of many
factors in a dynamic environment, and the deteriorated model performance
does not necessarily lead to safety hazards. The linkage between the perfor-
mance of a deep learning model under adversarial attacks and driving safety
is not studied in the literature. In particular, there are no clear answers to
the following questions: 1) Does the precision decline or the erroneous rate
increase of the deep learning models under attacks represent their robustness
in regard to driving safety of autonomous vehicles? In other words, does
a larger decline in accuracy of an attacked deep learning model indicate a
higher risk of driving safety? Similarly, does a slight decrease in accuracy
of a deep learning model under attacks indicate mild risk of driving safety?
2) If the answers to the previous questions are all no, what are the reasons
behind?

In this chapter, we aim to answer the aforementioned questions by evalu-
ating the impact of two types of representative adversarial attacks, pertur-
bation attacks and patch attacks, on driving safety of vision-based au-
tonomous driving systems, rather than the accuracy of deep learning models.
We also investigate the reasons causing the decoupling between the detection
precision of adversarial attacks and driving safety.

This study considers vision-based autonomous driving which mainly relies
on stereo cameras for the task of environmental sensing. The vision-based
object detectors that we consider in this chapter are Stereo R-CNN [36] and
DSGN [14], two state-of-the-art methods in this area.

To facilitate this study, we propose an end-to-end driving safety evalu-
ation framework with a set of designed driving safety performance metrics,
where the evaluation framework can directly take the results of the 3D object
detector as input and outputs the scores of the driving safety performance
metrics as the final assessment.

To implement such an evaluation framework, we are faced with two non-
trivial technical challenges. First, the results of the 3D object detector only
contain static information, such as position and dimension. Thus, we cannot
determine which objects are moving and which are static. Second, to real-
istically generate a planned trajectory for the self-driving ego-vehicle, real
driving constraints, such as speed limits for di↵erent road types and dynam-
ics models for di↵erent vehicles, must be provided to the motion planning
module. Considering that the driving scenarios change dynamically, we need
to select appropriate real driving constraints accordingly for driving safety
assessment.
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To tackle the first challenge, we train a CNN-based classifier with manu-
ally labeled ground truth to categorize whether an object is moving or static.
For the second challenge, we train another classifier with road type labels to
classify the road type of each scenario, so as to select appropriate driving
constraints.

To obtain comprehensive experiment results, we apply the aforementioned
two types of adversarial attacks with di↵erent attack intensities in our eval-
uation framework and measure the rate that the motion planner successfully
finds a trajectory, the rate of collision occurrence, and the rate that the ego-
vehicle drives safely from the initial position to the goal region. In the mean-
time, we also measure the precision changes of the vision-based 3D object
detectors when they are under attacks. By linking the impact of adversarial
attacks on driving safety and on 3D object detection together, we manage
to find the answers to our motivation questions. The main contributions of
this chapter can be summarized as follows.

• We propose an end-to-end driving safety evaluation framework that di-
rectly takes the produced results of the 3D object detector as input and
outputs driving safety performance scores as the evaluation outcome.
With modular design, each individual module can be easily replaced
so that the framework can be adapted to evaluate the driving safety of
di↵erent self-driving systems threatened by various attacks.

• We conduct extensive experiments and observe that the changes in ob-
ject detection precision and the changes in driving safety performance
metrics caused by adversarial attacks are decoupled. Therefore, the an-
swers to our motivation questions are all no. And we also observe that
DSGN is more robust than Stereo R-CNN in terms of driving safety.

• We investigate the reasons behind our answers to those questions. We
find that the reason for the decoupling is that it is easier for pertur-
bation attacks to mislead object detectors to detect ghost objects at
roadside which cause little influence on driving safety but huge impact
on detection precision. We also find out that the reason why DSGN is
more robust than Stereo R-CNN is that the latter is purely based on
deep neural network, while DSGN adopts the Spatial Pyramid Pooling
(SPP) in its architecture which can alleviate the attack e↵ects.

The rest of this chapter is organized as follows. In Section 5.2, we first
briefly introduce the attack model of the two adversarial attacks studied in
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Figure 5.1 The end-to-end driving safety evaluation framework.

this chapter. In Section 5.3, we elaborate on our proposed end-to-end evalu-
ation framework and the driving safety performance metrics. In Section 5.4,
we present the experiment design and results. In Section 5.5, we investigate
the causes of our observations with an ablation study. Finally, we conclude
this chapter in Section 5.6.

5.2 Attack Models

We assess the impact of two types of adversarial attacks, perturbation attacks
and patch attacks, on driving safety. Here, we briefly introduce the attack
models.

Perturbation Attack. The goal of this type of adversarial attacks is to
make the deep learning model dysfunctional by adding small changes to each
pixel in the image that are imperceptible to human eyes. With prior knowl-
edge of the deep learning model, attackers can launch perturbation attacks
by tapping into the self-driving system and perturbing camera images. We
consider the method of PGD [39] to achieve input-specific attacks. Consider
a perturbation �

per and an image pair (Il, Ir), where �per has the same dimen-
sion as Il and Ir. Let the initial perturbed image pair (Ĩperl,0 , Ĩ

per
r,0 ) = (Il, Ir).

The attack is carried out by updating the perturbation using the projected
loss gradient of the 3D object detector through multiple iterations with

�
per
n = Clip✏{↵⇥ sign(r(Il,Ir)L(O✓(Ĩ

per
l,n , Ĩ

per
r,n ), b

true))} (5.1)

and
(Ĩperl,n+1, Ĩ

per
r,n+1) = (Ĩperl,n + �

per
n , Ĩ

per
r,n + �

per
n ) (5.2)
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where Clip✏{·} ensures that the value is within [�✏, ✏], ↵ is the parameter
that controls the attack intensity, sign(·) denotes the sign function, O✓(·, ·)
represents the vision-based 3D object detector parametrized by ✓, L(·, ·) is
the loss function of O✓(·, ·), btrue is the ground truth label paired with (Il, Ir),
and 0 6 n 6 N � 1. For convenience, we denote the perturbation attack as
(Ĩperl , Ĩ

per
r ) = A

per(Il, Ir, btrue, ✏,↵, N).
Patch Attack. The patch attack is designed to model the real-world

poster-printing attack in [19]. In the context of vision-based 3D object de-
tection, a patch attack is launched to mislead the detector so that it detects
ghost objects by including the patch in the view of the image. With prior
knowledge of the deep learning model, attackers can train a patch o✏ine,
print it out, and put the physical patch inside the view of cameras to launch
the attack. For example, the attacker can place the patch at the roadside
where the vision-based self-driving car passes by. Since a real-world 3D point
appears at di↵erent positions in two stereo images, we consider a patch �

pat

that is pasted onto Il at locl and onto Ir at locr, where (locl, locr) 2 L, L
represents a set of random position pairs. Let �locl,locr 2 ⇤ be the dispar-
ity between locl and locr, where ⇤ denotes a set of valid disparities in the
physical world. Let ⌧ 2 T be a transformation that can be applied to �

pat,
where T includes rotations. Then, the patched image pair can be represented
as (Ĩpatl , Ĩ

pat
r ) = A

pat(Il, Ir, �pat, locl, locr, ⌧). To implement this attack, the
patch is optimized as

argmin
�pat

E(Il,Ir)⇠I,(locl,locr)⇠L,⌧⇠T L(O✓(Ĩ
pat
l , Ĩ

pat
r ), b⇤), (5.3)

where b
⇤ denotes the predefined 3D bounding boxes used for misleading the

object detector and serves as the optimization target here.

5.3 End-to-end Driving Safety Evaluation
Framework

As discussed in Chapter 2, many previous studied only showed that deep
learning models of autonomous driving can be compromised by adversarial
attacks, but they did not systematically assess the attack impact on driving
safety. Our goal is to answer the questions raised in Section 5.1 by investigat-
ing the impact of perturbation attacks and patch attacks on driving safety of
vision-based autonomous vehicles. This investigation considers not only the
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performance of the attacked deep learning models but also their impact on
the overall safety, which is a combined e↵ect of di↵erent functional modules
involved in autonomous driving.

To this end, we design an end-to-end driving safety evaluation frame-
work. End-to-end means that our system directly takes 3D object detec-
tion results as input and outputs the driving safety scores. Moreover, our
evaluation framework adopts a modular design, so that each module can
be easily replaced with other methods to assess the driving safety of di↵er-
ent autonomous driving systems. Note that the existing simulators, such as
Baidu Apollo [2] and CARLA [17], either have a low level of customization
or are not compatible with real autonomous driving datasets. Therefore,
we implement our own evaluation framework with real autonomous driving
dataset to evaluate the impact of adversarial attacks on driving safety. In
this section, we first introduce our evaluation framework model for vision-
based autonomous driving and the driving safety metrics, then elaborate on
the framework implementation details.

5.3.1 Framework

Our evaluation framework works along with the data flow of vision-based au-
tonomous driving systems. In Figure 5.1, the black lines represent the data
flow of our evaluation framework, while the red lines are for the data flow of
the autonomous driving system. Usually inside the vision-based autonomous
vehicle, a pair of stereo images (Il, Ir 2 Rh⇥w⇥3) is first fed as the input to the
3D object detection module O✓(·, ·), which is parameterized by ✓ and gener-
ates detected objects in 3D bounding boxes b (denoted as b = O✓(Il, Ir)) as
the output. Next, the bounding boxes b along with some extra information
are passed to the the motion planning module M(·). At last, the vehicle
control units execute the driving motion orders from the motion planning
module. As depicted in Figure 5.1, our proposed end-to-end driving safety
evaluation framework directly takes the detected objects of O✓(·, ·) as input,
uses the same motion planning module of the autonomous vehicle, and out-
puts scores for driving safety metrics. This modular design makes it possible
for our evaluation framework to be adopted by other self-driving systems
which have di↵erent implementation of the aforementioned modules.

As described in Section 5.1, two main technical challenges need to be ad-
dressed after the object detection results are fed into our evaluation frame-
work. First, the 3D bounding boxes b as the object detection results only
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contain static information, i.e., object category, box dimensions, box center
position in 3D space, and the confidence score. Base on the static informa-
tion of one frame of data, we cannot distinguish between moving objects and
static objects. However, the subsequent motion planning module requires
dynamic information of objects as part of its input. Second, to realistically
produce planned trajectory for the self-driving vehicle, driving constraints,
including speed limits for di↵erent road types and dynamics constraints for
di↵erent moving vehicles (acceleration, jerk, energy, etc.), must be considered
to comply with the real driving scenarios. In addition, as the real driving
scenarios can change dynamically, we must choose appropriate real driving
constraints accordingly for driving safety evaluation.

To tackle the first challenge, we train a CNN-based moving object classi-
fier C(·, ·, ·) to distinguish between dynamic and static objects by leveraging
continuous frames of image data. We manually label each object with the
ground truth indicating whether this object is moving or not. By doing
this, we associate the object detection results with dynamic information. We
denote this process as ~b = C(b, Il, Ir).

To address the second challenge, we train another CNN-based model
S(·, ·) with road type labels as the driving constraint selector, so that it
can classify the road type of driving scenarios and select proper real driving
constraints for the evaluation. We denote this part as (s0, r, d) = S(Il, Ir),
where s0 is the initial vehicle state, r is the allowed speed range, and d

represents the vehicle dynamics. In this chapter, we define a vehicle state
s := (p, v,',!) as a combination of position p, velocity v, orientation ', and
steering angle ! at a specific moment. Note that both the two aforementioned
models, C(·, ·, ·) and S(·, ·), are trained on KITTI raw dataset [21].

Then, together with goal region g and cost function c, we combine the pro-
cessed results of both the moving object classifier and the driving constraint
selector to form a planning scenario. After that, the scenario is fed to the
motion planning module M(·) that outputs a temporal sequence of planned
vehicle states {st} (a trajectory with planned driving motions), which is de-
noted as {st} = M(~b, s0, r, g, c, d), where 1 6 t 6 T .

The final assessment of driving safety is conducted by the evaluation
module based on processing a large number of driving scenarios. Specifically,
the evaluation module incorporates the planned trajectory into the planning
scenario and detects collision for each driving scenario in the dataset. Then,
it generates driving safety performance scores based on all detected colli-
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(a) Clean image input. (b) Ground truth of object detec-

tion.

(c) Detection results of DSGN

without attack.

(d) Detection results of DSGN

under attack.

(e) Detection results of Stereo R-

CNN without attack.

(f) Detection results of Stereo R-

CNN under attack.

(g) Clean image input. (h) Ground truth of object detec-

tion.

(i) Detection results of DSGN

without attack.

(j) Detection results of DSGN un-

der attack.

(k) Detection results of Stereo R-

CNN without attack.

(l) Detection results of Stereo R-

CNN under attack.

Figure 5.2 When there is no attack, both Stereo R-CNN and DSGN can detect

objects accurately as shown in (c), (e), (i), and (k). When the perturbation attack

is launched, the two models produce erroneous object detection results including

inaccurate detection of real objects in (d), (j), and false detection of ghost objects

in (f), (l).
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sions. Note that we refer to a collision as the physical contact of objects.
In this chapter, we evaluate driving safety on the KITTI object detection
dataset [22].

Next, we introduce the driving safety performance metrics and present
the details of the framework implementation.

5.3.2 Driving Safety Performance Metrics

We define the driving safety as the vehicular ability to safely moves without
causing dangers or harms to passengers, the ego vehicle, and surrounding
objects. And we use the probabilities of dangers and accidents to quantify
it. Therefore, to evaluate the driving safety of the vision-based autonomous
driving system in a quantitative manner, we define a set of driving safety
performance metrics as follows.

• Successful planning rate. In some scenarios, the motion planning
module may not be able to generate a trajectory solution, which im-
poses a risk in driving safety. Thus, we define the successful planning
rate as msuc = ktrj

kdts
, where kdts is the total number of scenarios in

a dataset, and ktrj is the number of scenarios in that dataset where
a trajectory can be successfully generated, no matter whether it is
collision-free or not. For the sake of simplicity, this metric is referred
to as the success rate.

• Collision rate. We define the collision rate, mcls, as the percentage
of scenarios in all successfully planned trajectories where a collision
occurs. Let mcls = kcls

ktrj
, where kcls is the number of scenarios with

collision occurrence. Collision rate approximately reflects the collision
probability under di↵erent levels of threats.

• Safe driving rate. The safe driving rate, msaf , is defined as the
percentage of scenarios in a dataset where a collision-free trajectory
can be produced by the motion planning module. We denote it as
msaf = ktrj�kcls

kdts
= msuc � kcls

ktrj

ktrj
kdts

= msuc �mclsmsuc = (1�mcls)msuc.

In this chapter, we only focus on fatal driving risks when referring to the
driving safety. By measuring successful planning rate and collision rate, we
capture the two most risky driving scenarios in autonomous driving, i.e., the
failure of path planning and collision.
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(a) DSGN, ↵ = 0.4 (b) Stereo R-CNN,

↵ = 0.4
(c) DSGN, ↵ = 1 (d) Stereo R-CNN,

↵ = 1

Figure 5.3 Average precision for 3D object detection under the perturbation attack.

Changing to left lane

Keeping lane

Changing to right lane

(a) DSGN, ↵ = 0.4 (b) Stereo R-CNN,

↵ = 0.4
(c) DSGN, ↵ = 1 (d) Stereo R-CNN,

↵ = 1

Figure 5.4 Driving safety performance metrics under the perturbation attack.

Note that successful planning rate and collision rate are also common
performance metrics measuring the quality of motion planning [18]. Further-
more, safe driving rate is jointly determined by both successful planning rate
and collision rate, which is a more direct measure of driving safety.
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5.3.3 Implementation

To implement this end-to-end driving safety evaluation framework for vision-
based autonomous driving, we adopt two pre-trained models for the object
detection module, namely, Stereo R-CNN [36] and DSGN [14], which are
currently two state-of-the-art methods in the area of vision-based 3D object
detection. As for the motion planning module and the evaluation module,
we use CommonRoad [1] as the framework and leverage the built-in A* [28]
with sampled motion primitives as the motion planning method.

Table 5.1

Driving Safety Performance Metrics under the Perturbation Attack

(↵ = 0.4)

Model DSGN Stereo R-CNN
Iteration Unattacked 1 2 3 4 Unattacked 1 2 3 4

Success rate (%)
Left 89.6 89.6 89.5 89.3 89.5 89.8 89.8 90.4 90.0 88.8

Straight 96.5 96.7 96.7 96.7 96.9 96.4 96.0 95.1 95.1 94.5
Right 84.4 84.2 84.4 84.6 84.8 84.9 85.3 84.4 85.9 85.2

Collision rate (%)
Left 2.2 2.2 2.4 2.6 2.8 3.1 2.7 3.7 4.1 3.7

Straight 0.7 0.7 0.7 0.9 1.1 1.1 1.1 0.9 1.3 1.7
Right 1.7 2.3 2.7 3.6 3.8 3.3 3.5 3.5 5.4 7.2

Safe driving rate (%)
Left 87.7 87.7 87.3 86.9 86.9 87.0 87.4 87.0 86.3 85.4

Straight 95.8 96.0 96.0 95.8 95.8 95.3 94.9 94.1 93.8 92.9
Right 83.0 82.2 82.0 81.5 81.5 82.1 82.3 81.4 81.2 79.1

Table 5.2

Driving Safety Performance Metrics under the Perturbation Attack

(↵ = 1)

Model DSGN Stereo R-CNN
Iteration Unattacked 1 2 3 4 Unattacked 1 2 3 4

Success rate (%)
Left 89.6 90.0 89.3 89.8 89.5 89.8 90.2 88.4 89.8 84.6

Straight 96.5 96.7 96.5 96.5 96.9 96.4 95.8 94.2 95.5 90.6
Right 84.4 84.4 84.4 84.6 84.8 84.9 85.7 85.1 86.7 82.4

Collision rate (%)
Left 2.2 2.6 2.8 3.4 3.4 3.1 3.3 3.2 4.7 6.4

Straight 0.7 0.7 0.9 1.3 1.3 1.1 1.5 1.2 2.1 3.5
Right 1.7 3.2 3.8 5.3 5.9 3.3 4.1 5.1 8.6 11.3

Safe driving rate (%)
Left 87.7 87.7 86.7 86.7 86.4 87.0 87.2 85.5 85.5 79.2

Straight 95.8 96.0 95.6 92.9 95.6 95.3 94.3 93.1 93.4 87.4
Right 83.0 81.7 81.1 80.1 79.7 82.1 82.1 80.7 79.2 73.0

To implement the moving object classifier, we extract in total 600 real
driving scenarios from the KITTI raw dataset [21] and manually label each
object in each driving scenario with a moving/static property. We use 500
scenarios for training and 100 scenarios for validation. To determine whether
an object is moving or not in a driving scenario, we refer to the previous and
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the subsequent image frames of that scenario. Though it is easy for human
to judge the moving object from sequential frames, two people are assigned
to manually label the scenarios independently in order to eliminate personal
bias or errors in manual labelling. The independently produced labels are
checked together for consistency, and no inconsistent labelling is found. We
adopt the 16-layer VGG net [57] as the core network of the moving object
classifier and replace its fully connected layers, i.e., fc6, fc7, and fc8, with
a flatten layer, a new fully connected layer with a dropout layer and ReLU
activation function, and another new fully connected layer with a dropout
layer and a sigmoid activation function, respectively, to make sure that there
is only one output score to indicate the probability of a moving object. The
validation results suggest that the accuracy of the trained moving object
classifier is 98.31%.

In addition, to implement the driving constraint selector, we also leverage
the KITTI raw dataset [21] to train the model so that it can classify the
road type of a scenario. Specifically, we divide the dataset into two subsets,
i.e., street and highway. The street subset consists of city and residential
scenarios where the tra�c speed is relatively low, while the highway subset
contains highway scenarios in which vehicles move much faster. Accordingly,
we pre-define two sets of motion primitives for two road types so that the
selector can pick the motion primitive with appropriate speed ranges and
steering angle ranges after classifying the road type. The selector also chooses
the dynamics constraints for moving vehicles predicted by the moving object
classifier. The network architecture of the driving constraint selector consists
of 5 convolution layers connected by max-pooling layers and 1 fully connected
layer with dropout. Both convolution layers and the fully connected layer
use ReLU as the activation function. After excluding the scenarios without
cars, we select 444 scenarios as the training dataset and 112 scenarios as the
validation dataset. The validation result indicates that the accuracy of the
driving constraint selector achieves 94.64%.

5.4 Experiments

We conduct extensive experiments to investigate the impact of perturbation
attacks and patch attacks on driving safety of vision-based autonomous vehi-
cles. We first introduce the common setup for all experiments, then elaborate
on the specific settings for each attack experiment and present correspond-
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(a) Clean image input. (b) Ground truth of object detec-

tion.

(c) Detection results of DSGN

without attack.

(d) Detection results of DSGN

under attack.

(e) Detection results of Stereo R-

CNN without attack.

(f) Detection results of Stereo R-

CNN under attack.

(g) Clean image input. (h) Ground truth of object detec-

tion.

(i) Detection results of DSGN

without attack.

(j) Detection results of DSGN un-

der attack.

(k) Detection results of Stereo R-

CNN without attack.

(l) Detection results of Stereo R-

CNN under attack.

Figure 5.5 The patch attack triggers 3D object detectors to generate ghost bound-

ing boxes at in the area of the patch as shown in (f) and (l). It has little influence

on the detection of the objects away from the patch.
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ing evaluation results. Finally, we summarize our findings at the end of this
section.

5.4.1 Common Setup

In this chapter, we conduct all experiments by applying the two types of ad-
versarial attacks with di↵erent settings in our driving safety evaluation frame-
work. Specifically, the evaluation framework includes two object detection
modules, Stereo R-CNN [36] and DSGN [14]. In order to assess the impact
comprehensively, we gradually increase the attack intensity by changing the
attack settings in fine-grained steps. For the same purpose, we also consider
three driving intentions of the ego-vehicle for each scenario when planning
the trajectory, namely, changing to left lane, changing to right lane,
and keeping lane, which are abbreviated as left, right, and straight, re-
spectively. For these three cases, the initial position of the ego-vehicle is the
same and the goal region is located 15 meters away from the initial position
but within three di↵erent adjacent lanes. Moreover, we randomly assign an
initial speed within the selected speed range to each moving vehicle, includ-
ing the ego-car. Specifically, the initial speed for moving vehicles in street
scenarios is randomly assigned within the range of [22, 29] km/h, considering
the 30 km/h speed limit in German cities, campus and residential areas. The
initial speed in highway scenarios is randomly assigned within the range of
[40, 47] km/h, concerning the 50 km/h speed limit of built-up roads in Ger-
many. For each attack, after the framework processes all the scenarios and
generates the motion planning results, it assesses the attack impact on the
performance metrics of driving safety as well as on the accuracy of 3D object
detector. By linking these two attack impacts together, we manage to obtain
evaluation results that help answer the questions raised in Section 5.1. The
models of Stereo R-CNN [36] and DSGN [14] are pretrained with 3712 data
points from the KITTI object detection dataset [22]. For each experiment
setting, we test 600 real driving scenarios. The platform that we use is a
Ubuntu 18.04 server equipped with an Nvidia Tesla V100 GPU.

In our experiments, the evaluation of driving safety is based on the trajec-
tory produced by the motion planning module and measured by the driving
safety performance metrics. In terms of evaluating the accuracy of the vision-
based 3D object detector, we adopt the KITTI object detection benchmark
that tests the detector with a three-level standard, namely, easy, moderate,
and hard [22]. We follow the standard to measure the average precision
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(AP) of the detector with Intersection over Union (IoU) larger than 70%.

Table 5.3

Average Precision for 3D Object Detection under Patch Attack

Model DSGN Stereo R-CNN

Scenario Unattacked
Random Specific Attack

Unattacked
Random Specific Attack

Attack Left Straight Right Attack Left Straight Right
3D easy 70.94 63.85 65.72 64.96 64.87 56.47 53.17 48.14 47.82 50.07

Detection moderate 52.98 48.20 51.47 50.77 51.63 38.20 37.07 36.27 35.23 38.02
AP (%) hard 47.29 44.30 46.80 46.15 46.48 32.66 31.88 31.21 30.60 32.45

Table 5.4

Driving Safety Performance Metrics under the Patch Attack

Model DSGN Stereo R-CNN
Scenario Unattacked Random Attack Specific Attack Unattacked Random Attack Specific Attack

Success rate(%)
Left 89.6 90.0 90.0 89.8 70.3 83.7

Straight 96.5 96.5 96.7 96.4 81.2 57.5
Right 84.4 84.6 84.8 84.9 68.7 74.4

Collision rate(%)
Left 2.2 2.6 2.8 3.1 1.9 2.1

Straight 0.7 0.7 0.9 1.1 1.4 4.7
Right 1.7 2.3 2.1 3.3 3.9 4.2

Safe driving rate(%)
Left 87.7 87.7 87.5 87.0 68.9 81.9

Straight 95.8 95.8 95.8 95.3 80.1 54.7
Right 83.0 82.6 83.0 82.1 65.9 71.2

5.4.2 Perturbation Attack

In order to perform the perturbation attack against autonomous driving sys-
tems at various intensities, we adjust two parameters ↵ and n in Eqn. (5.1).
To ensure that the perturbation is imperceivable to human eyes, their values
usually should be set as small as possible. Specifically, we set the value of
↵ as 0.4 and 1, to represent medium to high attack intensities, respectively.
The number of iterations n changes from 1 to 4 accordingly, so that the mod-
ification on image pixel values is constrained within the range of [0.4, 4]. We
note that even the attack with the lowest attack intensity, i.e., ↵ = 0.4 and
n = 1, can cause significant decline in the accuracy of 3D object detectors.
Moreover, the produced perturbation and the input stereo images have the
same dimension.

Evaluation. The e↵ect of the perturbation attack in some driving sce-
narios is shown in Figure 5.2 where we can see that the attack causes inaccu-
rate detection of real objects and false detection of ghost objects. We present
the impact of the perturbation attack with di↵erent settings on average pre-
cision of 3D object detection and on driving safety metrics in Figure 5.3 and
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Table 5.5

Driving Safety Performance Metrics of Stereo R-CNN under the

Patch Attack with Various Intentions

Specific attack Random attack
— Same intentions1 Di↵erent intentions2 Unattacked

Success rate (%) 71.9 76.2 91.6 90.4
Collision rate (%) 3.5 2.3 1.5 2.4

Safe driving rate (%) 69.3 74.4 90.1 88.1
1 ”Same intentions” refers to cases where the attack intention and the

driving intention are the same.
2 ”Di↵erent intentions” refers to cases where the attack intention di↵ers

from the driving intention.

Table 5.6

Safe Driving Rate using Different Planning Algorithms

Planning algorithm GBFS A*
Scenario Ground Truth

Safe driving rate (%)
Left 87.9 89.7

Straight 98.0 98.0
Right 82.3 85.2

Table 5.7

Safe Driving Rate with Different Inputs

Model — DSGN Stereo R-CNN

Scenario
Ground
Truth

Unattacked
Perturbation

Attack
Patch
Attack

Unattacked
Perturbation

Attack
Patch
Attack

Safe driving rate (%)
Left 89.7 87.7 86.4 87.7 87.0 79.2 68.9

Straight 98.0 95.8 95.6 95.8 95.3 87.4 80.1
Right 85.2 83.0 79.7 82.6 82.1 73.0 65.9

Figure 5.4, respectively. The numerical results of driving safety scores can
be found in Table 5.1 and Table 5.2. When the number of iterations n is 0,
it indicates that there is no attack applied. From Figure 5.3, we can observe
that with the enhanced attack intensity by increasing ↵ and n, the average
precision of both object detection models drops significantly, while the driv-
ing safety metrics only show very small changes. Take DSGN as an example.
When ↵ is 0.4 and n is increased from 0 (no attack) to 1, the AP declines
by more than half for all three levels of the benchmark standard, i.e., from
70.94% to 21.99% for the category of AP easy, from 52.98% to 14.45% for
the category of AP moderate, and from 47.29% to 13.96% for the category of
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AP hard. When n is 3, the AP of DSGN almost reaches 0. However, in the
meantime, the driving safety performance metrics in Figure 5.4 barely change
for all three intention cases (e.g., collision rate is only changed from 1.7% to
3.6% for the case of changing to right lane). When ↵ = 1 and n is increased
from 0 (no attack) to 4, the AP of DSGN drops even more significantly, but
the driving safety metrics only demonstrate slightly larger changes than that
when ↵ = 0.4 (e.g., the safe driving rate drops by 0.8% when ↵ = 0.4 and
by 1.3% when ↵ = 1 for the case of changing to left lane). The experiment
results clearly indicate that the perturbation attack can dramatically a↵ect
the performance of 3D object detection methods, but does not have much
influence on the driving safety. In other words, a larger precision decline of
the vision-based 3D object detectors under the perturbation attack does not
indicate higher risk of driving safety.

Moreover, by comparing DSGN and Stereo R-CNN in terms of driving
safety under perturbation attacks, we can observe that the changes in driving
safety metrics for Stereo R-CNN tend to be larger than the changes for DSGN
when both of them are tested in the same driving intention scenarios and at
the same intensity. Therefore, Stereo R-CNN is more prone to perturbation
attacks than DSGN in regard to driving safety.

5.4.3 Patch Attack

Di↵erent from perturbation attacks, the size of a patch in a patch attack is
much smaller than the size of an input image. In our patch attack experi-
ments, the radius of the patch is limited to 38 pixels. Here, the patch attack
is launched as a white-box attack, which means that the patch is trained
for Stereo R-CNN and DSGN, respectively. Specifically, we train the patch
according to Eqn. 5.2 by placing the patch at a random position in stereo
image pair and setting b

⇤ in Eqn. 5.3 accordingly for each training scenario.
To ensure that the patch for Stereo R-CNN and the patch for DSGN are
equally optimized, we use the same learning step size and the same number
of epochs when training patches.

We design two attack approaches, namely, random attack and specific
attack. Random attacks are to place the trained patch at a random position
within the entire image no matter which driving intention case it is. In other
words, the attack intention may or may not be consistent with the driving
intention in random attacks. Specific attacks are also to place the patch
randomly but within a certain region of the image, depending on the driving
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intention case, e.g., if the driving intention is changing to right lane, then
the patch is placed in the right part of the image. In other words, the attack
intention is always consistent with the driving intention in specific attacks.
By designing two attack approaches, we can create di↵erent attack intensities
for patch attacks. Specifically, the attack intensity of random attacks is lower
than that of specific attacks.

Evaluation. The performance of patch attacks in some driving scenarios
is shown in Figure 5.5 in which we can observe that patch attacks cause false
detection of ghost objects. The impact of patch attacks on object detection
and driving safety are shown in Table 5.3 and Table 5.4 respectively. From
the tables, we can observe that, when di↵erent attack approaches are applied,
the average precision of both object detection models declines slightly, while
some of the driving safety metrics degrade significantly. For example, when
random patch attacks are applied to the Stereo R-CNN model, AP declines
slightly for all three levels of the benchmark standard, i.e., from 56.47% to
53.17% for the case of AP easy, from 38.20% to 37.07% for the case of AP
moderate, and 32.66% from to 31.88% for the case of AP hard. However,
the driving safety performance metrics of Stereo R-CNN have a relatively
larger drop under random patch attacks (e.g., safe driving rate drops from
95.3% to 80.1% for the case of keeping lane). At the same time, for specific
patch attacks, Stereo R-CNN shows the similar average precision decline
which is only within the range of [0.21%, 8.65%], while significant driving
safety performance degradation can be observed (e.g., the safe driving rate
decreases to half for the case of keeping lane). The experiment results suggest
that a slight precision decline of the 3D object detectors under patch attacks
does not indicate mild risk of driving safety.

Since the driving safety performance of Stereo R-CNN can be significantly
a↵ected by patch attacks, we further investigate the performance under the
attacks where the attack intention is the same as the driving intention, and
the attacks where the attack intention is di↵erent from the driving intention.
The results are listed in Table 5.5. From Table 5.5, we can see that the
driving safety performance under the attacks where the driving intention
and the attack intention are di↵erent is very similar to that in unattacked
scenarios, and the performance under the attacks where the attack intention
is the same as the driving intention is very close to that in specific attack
scenarios.

Furthermore, the DSGN model again shows its much better robustness
in object detection and driving safety under patch attacks. We can observe
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(a) No attack. (b) Attack applied. (c) Attack applied and texture

of side area replaced.

Figure 5.6 Results of the texture replacement experiment for Stereo R-CNN.

(a) No attack. (b) Attack applied. (c) Attack applied and tex-

ture of side area replaced.

Figure 5.7 Results of the texture replacement experiment for DSGN.

that, even under the well-designed specific patch attacks, DSGN’s average
precision decline is only less than 6%, and the driving safety performance
metrics almost remain unchanged, while Stereo R-CNN performs worse under
both random patch attacks and specific patch attacks.

5.4.4 Attack Impact Demonstration

To demonstrate that the performance of di↵erent models under di↵erent
attacks is mainly caused by adversarial attacks, not by the motion planning
algorithms, we conduct two experiments.

We first evaluate the performance of the motion planning module using
di↵erent inputs and then calculate the safe driving rates in di↵erent scenar-
ios. Specifically, we first use the ground truth data of 3D object detection
as the inputs to evaluate two popular motion planning algorithms, A* and
Greedy-BFS, so as to show the impact of the motion planning module on
the driving safety. The experimental results are summarized in Table 5.6.
From Table 5.6, we can first observe that, when ground truth data are used,
the A* planning algorithm can achieve the safe driving rates 89.7%, 98.0%,
and 85.2% for the three driving intention scenarios, respectively, while the
Greedy-BFS algorithm can achieve the safe driving rates 87.9%, 98.0%, and
82.3% for the three driving intentions scenarios, respectively. The perfor-
mance of A* and the performance of the Greedy-BFS are very close. In

79



other words, the performance variance demonstrated by DSGN and Stereo
R-CNN under adversarial attacks is irrelevant to the selection of the mo-
tion planning algorithm. Since the performance of A* is slightly better than
that of Greedy-BFS, we select A* as the motion planning algorithm for our
driving safety evaluation framework.

We then use detection data without attacks (i.e., unattacked) and detec-
tion data under two types of attacks to demonstrate the impact of detection
module and adversarial attacks on the driving safety. The results are shown
in Table 5.7. From Table 5.7, we can observe that the safe driving rates
produced by the detection data without attacks are slightly smaller than the
safe driving rates when the ground truth data are used as inputs. This slight
di↵erence is caused by the accuracy of the two models. Finally, compared
with the safe driving rates when the inputs are unattacked detection data,
the safe driving rates under adversarial attacks are significantly declined in
all driving intention scenarios. Since all experiments are conducted using
the same motion planning algorithm, we can conclude that the declines in
the driving safety performance metrics are primarily caused by adversarial
attacks.

5.4.5 Findings

To briefly summarize, the findings from the experiments of perturbation at-
tacks and patch attacks are listed as follows:

• A larger precision decline of the attacked vision-based object detectors
does not necessarily indicate a higher risk of driving safety. Similarly,
a slight precision decline of the vision-based object detectors under at-
tacks does not necessarily indicate a small risk of driving safety, either.
Hence, the precision decline or the erroneous rate increase of the vision-
based object detectors under attacks cannot represent their robustness
with respect to driving safety of autonomous vehicles.

• Stereo R-CNN is less robust than DSGN in terms of driving safety and
detection accuracy when the attacks launched on them are at the same
intensity level. Hence, DSGN is a better selection of the vision-based
3D object detection for its stronger robustness and higher detection
precision.
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Input conv1 conv2 conv3 conv4 conv5 conv6upsample1smooth1smooth2smooth3maxpool1

Input conv1 conv2 conv3 conv4 conv5 branch1 branch2 branch3 branch4 fusion1 fusion2

Figure 5.8 Visualization of the feature maps of Stereo R-CNN (the 1st row) and

DSGN (the 2nd row) from shallow to deeper layers.

In terms of these two findings, we further design more experiments to
explain the real causes behind them in the next section.

5.5 Ablation Study

In this section, we first investigate the reason of the decoupling between the
precision of 3D object detectors and the driving safety performance metrics
under adversarial attacks. Second, we investigate the reason why the DSGN
model is more robust than the Stereo R-CNN model.

5.5.1 The Cause of the Decoupling between the Preci-
sion of 3D Object Detectors and Driving Safety
under Adversarial Attacks

From the experiments in Section 5.4, we observe that perturbation attacks
cause a significant precision decline in 3D object detection, but only a slight
change in driving safety performance. Patch attacks cause a slight decline
in 3D object detection precision, but a relatively significant performance
degradation in driving safety. To figure out the reasons beneath these results,
we take a closer look at the detection results of the attacked and unattacked
3D object detectors and compare them accordingly.

The reasons for the decoupling caused by patch attacks are relatively
straightforward. First, we notice that the a↵ected area of patch attacks is
limited to the patch itself where the patch is usually quite small in order
to make it di�cult to be detected. Thus, patch attacks can only trigger
the object detectors to produce a very small number of ghost 3D bounding
boxes inside the patch. This is the reason why the object detection precision
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does not show a significant decline when detectors are under patch attacks.
Second, since the adversarial patch is randomly placed in driving scenarios,
the resulted ghost 3D bounding boxes have a fair chance to appear on the
road surface and block the way of the ego-vehicle, which directly leads to
noticeably driving safety performance degradation. These two reasons to-
gether explain the decoupling between the precision of 3D object detectors
and driving safety under patch attacks. In the rest of this section, we mainly
focus on investigating the reasons for the decoupling caused by perturbation
attacks.

Apart from the fact that the perturbation attacks cause slight drifts of 3D
bounding boxes of real objects which are originally produced accurately when
no attack is launched, the most significant consequence of a perturbation
attack is that it triggers the object detectors to produce a lot of ghost 3D
bounding boxes which do not circle any specific or meaningful object inside.
In particular, almost all ghost boxes appear in the side areas of a road instead
of on the surface of a road. Since the optimal trajectory generated by the
motion planner most likely will not traverse the side areas of a road, the ghost
objects will not a↵ect the trajectory generated by the motion planner. In
other words, the trajectories generated before and after perturbation attacks
are essentially the same. Thus, driving safety is not a↵ected dramatically by
permutation attacks.

We further investigate why the ghost 3D bounding boxes caused by per-
turbation attacks tend to appear in the side areas of a road. After inspecting
the positions where ghost bounding boxes appear in a large number of driv-
ing scenarios, we hypothesize that the di↵erence in the texture complexity
between the side areas of a road and the road surface may be the cause of
this. The reason is that the texture of the road surface is more regular than
the texture of the side areas of a road. Thus, it takes more “e↵orts” for
perturbation attacks to change the pixel values to generate ghost boxes on
the road surface than that in the side areas of a road.

In order to validate our hypothesis, we design a texture replacement ex-
periment. Specifically, for a driving scenario in which vision-based 3D object
detectors under a perturbation attack produce ghost 3D bounding boxes in
the side areas of a road, we replace the texture of the side areas with the
texture of the road surface, then feed this modified driving scenario to the
attacked object detectors and check the detection results. If our hypothesis
is correct, we shall expect that the attacked object detectors do not produce
any ghost boxes in the side areas of a road for the modified driving scenario.
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The results of the texture replacement experiments are shown in Fig-
ure 5.6 for the Stereo R-CNN model and in Figure 5.7 for the DSGN model.
The attack setting of the perturbation attack applied here is set to be ↵ = 1
and n = 4 in Eqn. (5.1). From the figures, we can observe that both 3D ob-
ject detectors can detect the object accurately when there is no perturbation
attack applied (Figure 5.6a, 5.7a), and ghost 3D bounding boxes appear in
the side areas of a road when the perturbation attack is launched on the same
driving scenario (Figure 5.6b, 5.7b). More importantly, after we replace the
texture of side area of road with the texture of road surface (Figure 5.6c,
5.7c), no more ghost boxes are produced in the side area of the road by the
3D object detectors, which matches our expectation. Hence, the texture re-
placement experiment results validate our hypothesis that the di↵erence in
the texture complexity between the side areas of a road and the road sur-
face leads to the decoupling between the precision of 3D object detectors
and the driving safety performance metrics when the 3D object detectors are
attacked.

5.5.2 The Cause of Di↵erence in Robustness

The experiment results in Section 5.4 indicate that DSGN is more robust
than Stereo R-CNN in terms of driving safety and object detection when they
are under adversarial attacks. Especially, when patch attacks are launched,
DSGN is more robust than Stereo R-CNN.

To better understand the cause of such a di↵erence in robustness, we
conduct a contrast experiment by implementing the black-box patch attack
where instead of training a patch for each model separately, we learn a patch
p that is jointly optimized for both the DSGN model and the Stereo R-
CNN model using Eqn. (5.2). Thus, the patch is capable of attacking both
models. To conduct this experiment, we also generate an image I with
uniformly distributed random noise and paste the patch p on I to form the
attacked input image Ĩ. We then feed the two input images into the models
to observe the intermediate results produced by their network architectures.
In Figure 5.8, we visualize the di↵erence between corresponding intermediate
feature maps generated from I and Ĩ for both models respectively. In other
words, the feature map Fk in Figure 5.8 refers to the average norm of the
di↵erence between the k-th layer output with an attack applied and the k-th
layer output without any attack. For each model, we inspect the intermediate
feature map of layers from shallow to deep in the feature extraction part of its
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network architecture. Each feature map is cropped so that only the central
part is used for the propose of demonstration.

It is the spatial propagation of the patch activation area in feature maps
of a model that implies the robustness of the model to patch attacks. Specif-
ically, if the patch activation area in feature maps propagates along the data
flow direction of the network architecture, then the network architecture am-
plifies the impact of patch attacks on the model, suggesting weak robustness
of the model to patch attacks. In contrast, if the patch activation area in
feature maps does not propagate or even contracts along the data flow, then
the network architecture of the model is more resilient to patch attacks,
indicating stronger robustness of the model to adversarial patches.

In the first row of Figure 5.8, we show how the patch activation area prop-
agates layer by layer in the Stereo R-CNN model. In the first few convolution
layers (conv<1, 2, 3>), the patch activation area is bounded by the original
region. However, starting from the last two layers of the feature extractor
(conv<4, 5>), we observe that the activation area gradually propagates as
we move on to deeper layers. After the maxpool1 layer, the patch activa-
tion area propagates to almost the entire cropped image. Since the patch
activation area keeps propagating through the network architecture, Stereo
R-CNN shows poor robustness under patch attacks.

In the second row of Figure 5.8, the DSGN model shows less propagation
of the patch activation in the first three convolution layers (conv<1, 2, 3>),
but the activation area at the last two layers of the feature extractor (conv<4,
5>) are expanded slightly. According to the network structure of DSGN,
the feature extractor is connected to the Spatial Pyramid Pooling (SPP)
module, and the outputs of SPP branches (branch<1, 2, 3, 4>) are fused
with features from the former layers for future prediction. Interestingly, we
observe that the patch activation area shrinks to its original size after the
SPP module (fusion<1, 2>). Hence, di↵erent from Stereo R-CNN, the SPP
module in the DSGN model restrains the propagation of the patch impact.
This demonstrates that DSGN has strong robustness to adversarial patches
due to the SPP module in its network architecture. A similar observation of
the Spatial Pyramid structure can be found in another study [46]. We can
conclude that when the adversarial patch is used to attack the model of Stereo
R-CNN whose network architecture is not equipped with the SPP module,
the patch exploits the weakness of the network architecture and amplifies
its impact on 3D object detection. For the DSGN model, the SPP module
in its network architecture restrains the impact of the adversarial patch on
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3D object detection. Therefore, DSGN and Stereo R-CNN have di↵erent
robustness to patch attacks and demonstrate di↵erent performance on the
average precision of 3D object detection and the driving safety metrics.

5.6 Conclusion

In this chapter, we have systematically investigated the impact of adversarial
attacks not only on the object detection precision, but also on the driving
safety of vision-based autonomous vehicles. Specifically, we proposed an
end-to-end driving safety evaluation framework with designed performance
metrics for the assessment of driving safety. Through extensive evaluation
experiments, we found that a significant precision decline of 3D object de-
tectors under the perturbation attack only leads to a slight decline in the
driving safety performance metrics, but a mild precision decline of 3D ob-
ject detectors under the patch attack can result in a significant performance
degradation in driving safety. This finding suggests that it is desirable to
evaluate the robustness of deep learning models in terms of driving safety
rather than model precision. The proposed work can help guide the selection
of deep learning models. The code of our evaluation framework is available
upon request.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we focused on the sensor data validation for single autonomous
vehicles and multiple connected autonomous vehicles, and the end-to-end
impact evaluation of adversarial attacks on the driving safety of vision-based
autonomous vehicles.

First, we proposed a data validation framework to help defend optical
sensors for single autonomous vehicles. The framework is two-fold. At first,
we detected the optical attacks in a three-sensor system by analyzing the
distribution of information inconsistency among depth maps. Then, based on
the detection scheme, we further developed a method capable of identifying
up to n � 2 attacked sensors in a system with one LiDAR and n cameras.
We also presented the sensitivity analysis of our data validation framework.

Second, we proposed a data validation method to detect optical attacks
against LiDARs for multiple connected autonomous vehicles. In our method,
we leveraged multiple point clouds from neighboring vehicular nodes and
completed the scan in selected validation regions by mirroring points based
on object symmetry. Then, we discretized surface meshes generated from
selected validation regions into 2D grids and measured their distances. Fi-
nally, we detected the optical attacks against LiDARs by thresholding the
distances.

Third, we studies the linkage between attacked deep learning models and
driving safety by evaluating the impact of adversarial attacks, i.e., pertur-
bation attacks and patch attacks, on the driving safety of vision-based au-
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tonomous vehicles in an end-to-end fashion. To perform the evaluation, we
proposed an end-to-end driving safety evaluation framework with a set of de-
signed metrics. Through the experiments, we found the decoupling between
the weakened detection precision of deep learning models and the vehicular
driving safety when autonomous vehicles are under adversarial attacks. We
further investigated the reasons for the decoupling in an ablation study.

6.2 Future Work

With regards to sensor security and deep learning model security, there is
still a long way to go before reaching the goal of safe and secure autonomous
driving technology. In this thesis, we attempted to defend optical sensors and
evaluate the end-to-end impact of adversarial attacks on driving safety. In
the future, we aim to not only defend key parts of autonomous vehicles from
more security threats, but also recover from the possible attack damages:

• We plan to study methods to further identify the damaged portions
in image and point cloud, and perform data recovery for the damaged
portions using intact data from other redundant sensors of the ego-
vehicle, nearby infrastructure, or connected vehicles in vicinity.

• Since we used multiple single-vehicle point clouds to simulate the the
scenario of multiple connected autonomous vehicles in Chapter 4, we
plan to first verify our current method using simulated multi-vehicles
point clouds. Then, we will use LiDARs to harvest real multi-vehicles
point clouds and improve our current method. In addition, we plan to
further turn the step of comparison and thresholding into a learning-
based step.

• Based on our experiments and discovered causes [70] in Chapter 5, we
plan to expand our study to the autonomous vehicles that fuse the
information from both LiDARs and cameras, and consider adversarial
examples in other types of data, such as adversarial examples of LiDAR
point clouds.

• Since we found that the spatial pyramid structure is more robust under
adversarial attacks [70] in Chapter 5, we plan to design countermeasures
for deep learning models against adversarial attacks by leveraging the
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spatial pyramid structure. Our future studies will also be conducted in
an end-to-end fashion.
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